| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 |
- # Copyright 2024 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from typing import Optional, Tuple
- from .configuration_utils import PretrainedConfig
- from .utils import is_torch_available, logging
- logger = logging.get_logger(__name__)
- if is_torch_available():
- import torch
- def _compute_default_rope_parameters(
- config: Optional[PretrainedConfig] = None,
- device: Optional["torch.device"] = None,
- seq_len: Optional[int] = None,
- **rope_kwargs,
- ) -> Tuple["torch.Tensor", float]:
- """
- Computes the inverse frequencies according to the original RoPE implementation
- Args:
- config ([`~transformers.PretrainedConfig`]):
- The model configuration.
- device (`torch.device`):
- The device to use for initialization of the inverse frequencies.
- seq_len (`int`, *optional*):
- The current sequence length. Unused for this type of RoPE.
- rope_kwargs (`Dict`, *optional*):
- BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
- Returns:
- Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
- post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
- """
- if config is not None and len(rope_kwargs) > 0:
- raise ValueError(
- "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
- f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
- )
- if len(rope_kwargs) > 0:
- base = rope_kwargs["base"]
- dim = rope_kwargs["dim"]
- elif config is not None:
- base = config.rope_theta
- partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
- head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
- dim = int(head_dim * partial_rotary_factor)
- attention_factor = 1.0 # Unused in this type of RoPE
- # Compute the inverse frequencies
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
- return inv_freq, attention_factor
- def _compute_linear_scaling_rope_parameters(
- config: Optional[PretrainedConfig] = None,
- device: Optional["torch.device"] = None,
- seq_len: Optional[int] = None,
- **rope_kwargs,
- ) -> Tuple["torch.Tensor", float]:
- """
- Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
- Args:
- config ([`~transformers.PretrainedConfig`]):
- The model configuration.
- device (`torch.device`):
- The device to use for initialization of the inverse frequencies.
- seq_len (`int`, *optional*):
- The current sequence length. Unused for this type of RoPE.
- rope_kwargs (`Dict`, *optional*):
- BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
- Returns:
- Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
- post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
- """
- if config is not None and len(rope_kwargs) > 0:
- raise ValueError(
- "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
- f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
- )
- if len(rope_kwargs) > 0:
- factor = rope_kwargs["factor"]
- elif config is not None:
- factor = config.rope_scaling["factor"]
- # Gets the default RoPE parameters
- inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
- # Then applies linear scaling to the frequencies.
- # NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
- # applying scaling to the inverse frequencies is equivalent.
- inv_freq /= factor
- return inv_freq, attention_factor
- def _compute_dynamic_ntk_parameters(
- config: Optional[PretrainedConfig] = None,
- device: Optional["torch.device"] = None,
- seq_len: Optional[int] = None,
- **rope_kwargs,
- ) -> Tuple["torch.Tensor", float]:
- """
- Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
- Args:
- config ([`~transformers.PretrainedConfig`]):
- The model configuration.
- device (`torch.device`):
- The device to use for initialization of the inverse frequencies.
- seq_len (`int`, *optional*):
- The current sequence length, used to update the dynamic RoPE at inference time.
- rope_kwargs (`Dict`, *optional*):
- BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
- Returns:
- Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
- post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
- """
- # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
- if config is not None and len(rope_kwargs) > 0:
- raise ValueError(
- "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
- f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
- )
- if len(rope_kwargs) > 0:
- base = rope_kwargs["base"]
- dim = rope_kwargs["dim"]
- max_position_embeddings = rope_kwargs["max_position_embeddings"]
- factor = rope_kwargs["factor"]
- elif config is not None:
- base = config.rope_theta
- partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
- head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
- dim = int(head_dim * partial_rotary_factor)
- max_position_embeddings = config.max_position_embeddings
- factor = config.rope_scaling["factor"]
- attention_factor = 1.0 # Unused in this type of RoPE
- # seq_len: default to max_position_embeddings, e.g. at init time
- seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
- # Compute the inverse frequencies
- base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
- return inv_freq, attention_factor
- def _compute_yarn_parameters(
- config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
- ) -> Tuple["torch.Tensor", float]:
- """
- Computes the inverse frequencies with NTK scaling. Please refer to the
- [original paper](https://arxiv.org/abs/2309.00071)
- Args:
- config ([`~transformers.PretrainedConfig`]):
- The model configuration.
- device (`torch.device`):
- The device to use for initialization of the inverse frequencies.
- seq_len (`int`, *optional*):
- The current sequence length. Unused for this type of RoPE.
- rope_kwargs (`Dict`, *optional*):
- BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
- Returns:
- Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
- post-processing scaling factor applied to the computed cos/sin.
- """
- # No need to keep BC with yarn, unreleased when this new pattern was created.
- if len(rope_kwargs) > 0:
- raise ValueError(
- f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
- )
- base = config.rope_theta
- partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
- head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
- dim = int(head_dim * partial_rotary_factor)
- max_position_embeddings = config.max_position_embeddings
- factor = config.rope_scaling["factor"]
- # Sets the attention factor as suggested in the paper
- attention_factor = config.rope_scaling.get("attention_factor")
- if attention_factor is None:
- attention_factor = 0.1 * math.log(factor) + 1.0
- # Optional config options
- # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
- beta_fast = config.rope_scaling.get("beta_fast") or 32
- beta_slow = config.rope_scaling.get("beta_slow") or 1
- # Compute the inverse frequencies
- def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
- """Inverse dimension formula to find the dimension based on the number of rotations"""
- return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
- def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
- """Find dimension range bounds based on rotations"""
- low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
- high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
- return max(low, 0), min(high, dim - 1)
- def linear_ramp_factor(min, max, dim):
- if min == max:
- max += 0.001 # Prevent singularity
- linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
- ramp_func = torch.clamp(linear_func, 0, 1)
- return ramp_func
- # Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
- # to expand the possible context length. In other words, interpolation = apply scaling factor.
- pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
- inv_freq_extrapolation = 1.0 / pos_freqs
- inv_freq_interpolation = 1.0 / (factor * pos_freqs)
- low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
- # Get n-dimensional rotational scaling corrected for extrapolation
- inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
- inv_freq = (
- inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
- + inv_freq_extrapolation * inv_freq_extrapolation_factor
- )
- return inv_freq, attention_factor
- def _compute_longrope_parameters(
- config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
- ) -> Tuple["torch.Tensor", float]:
- """
- Computes the inverse frequencies with LongRoPE scaling. Please refer to the
- [original implementation](https://github.com/microsoft/LongRoPE)
- Args:
- config ([`~transformers.PretrainedConfig`]):
- The model configuration.
- device (`torch.device`):
- The device to use for initialization of the inverse frequencies.
- seq_len (`int`, *optional*):
- The current sequence length.
- rope_kwargs (`Dict`, *optional*):
- BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
- Returns:
- Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
- post-processing scaling factor applied to the computed cos/sin.
- """
- # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
- # No need to keep BC with longrope, unreleased when this new pattern was created.
- if len(rope_kwargs) > 0:
- raise ValueError(
- "Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
- f"{rope_kwargs}"
- )
- base = config.rope_theta
- partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
- head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
- dim = int(head_dim * partial_rotary_factor)
- long_factor = config.rope_scaling["long_factor"]
- short_factor = config.rope_scaling["short_factor"]
- factor = config.rope_scaling.get("factor")
- attention_factor = config.rope_scaling.get("attention_factor")
- # NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
- # `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
- # values to compute the default attention scaling factor, instead of using `factor`.
- if hasattr(config, "original_max_position_embeddings"):
- if seq_len and seq_len < config.original_max_position_embeddings:
- expanded_max_position_embeddings = config.original_max_position_embeddings
- else:
- expanded_max_position_embeddings = config.max_position_embeddings
- max_position_embeddings = config.original_max_position_embeddings
- factor = expanded_max_position_embeddings / max_position_embeddings
- else:
- max_position_embeddings = config.max_position_embeddings
- expanded_max_position_embeddings = max_position_embeddings * factor
- # Sets the attention factor as suggested in the paper
- if attention_factor is None:
- if factor <= 1.0:
- attention_factor = 1.0
- else:
- attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
- # Compute the inverse frequencies -- scaled based on the target sequence length
- if expanded_max_position_embeddings > max_position_embeddings:
- ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
- else:
- ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
- inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
- inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
- return inv_freq, attention_factor
- def _compute_llama3_parameters(
- config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
- ) -> Tuple["torch.Tensor", float]:
- """
- Computes the inverse frequencies for llama 3.1.
- Args:
- config ([`~transformers.PretrainedConfig`]):
- The model configuration.
- device (`torch.device`):
- The device to use for initialization of the inverse frequencies.
- seq_len (`int`, *optional*):
- The current sequence length. Unused for this type of RoPE.
- rope_kwargs (`Dict`, *optional*):
- BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
- Returns:
- Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
- post-processing scaling factor applied to the computed cos/sin.
- """
- # Gets the default RoPE parameters
- inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
- factor = config.rope_scaling["factor"] # `8` in the original implementation
- low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
- high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
- old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
- low_freq_wavelen = old_context_len / low_freq_factor
- high_freq_wavelen = old_context_len / high_freq_factor
- wavelen = 2 * math.pi / inv_freq
- # wavelen < high_freq_wavelen: do nothing
- # wavelen > low_freq_wavelen: divide by factor
- inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
- # otherwise: interpolate between the two, using a smooth factor
- smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
- smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
- is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
- inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
- return inv_freq_llama, attention_factor
- # This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
- # from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
- # parameterizations, as long as the callable has the same signature.
- ROPE_INIT_FUNCTIONS = {
- "default": _compute_default_rope_parameters,
- "linear": _compute_linear_scaling_rope_parameters,
- "dynamic": _compute_dynamic_ntk_parameters,
- "yarn": _compute_yarn_parameters,
- "longrope": _compute_longrope_parameters,
- "llama3": _compute_llama3_parameters,
- }
- def _check_received_keys(
- rope_type: str,
- received_keys: set,
- required_keys: set,
- optional_keys: Optional[set] = None,
- ignore_keys: Optional[set] = None,
- ):
- """Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
- # BC: "rope_type" was originally "type" -- let's check for "rope_type" when "type" is present
- if "type" in received_keys:
- received_keys -= {"type"}
- required_keys.add("rope_type")
- # Some models need to store model-specific keys, and we don't want to throw warning at them
- if ignore_keys is not None:
- received_keys -= ignore_keys
- missing_keys = required_keys - received_keys
- if missing_keys:
- raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
- if optional_keys is not None:
- unused_keys = received_keys - required_keys - optional_keys
- else:
- unused_keys = received_keys - required_keys
- if unused_keys:
- logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
- def _validate_default_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
- rope_scaling = config.rope_scaling
- rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
- required_keys = {"rope_type"}
- received_keys = set(rope_scaling.keys())
- _check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)
- def _validate_linear_scaling_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
- rope_scaling = config.rope_scaling
- rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
- required_keys = {"rope_type", "factor"}
- received_keys = set(rope_scaling.keys())
- _check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)
- factor = rope_scaling["factor"]
- if factor is None or not isinstance(factor, float) or factor < 1.0:
- logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
- def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
- rope_scaling = config.rope_scaling
- rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
- required_keys = {"rope_type", "factor"}
- # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
- optional_keys = {"original_max_position_embeddings"}
- received_keys = set(rope_scaling.keys())
- _check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)
- factor = rope_scaling["factor"]
- if factor is None or not isinstance(factor, float) or factor < 1.0:
- logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
- def _validate_yarn_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
- rope_scaling = config.rope_scaling
- rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
- required_keys = {"rope_type", "factor"}
- optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
- received_keys = set(rope_scaling.keys())
- _check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)
- factor = rope_scaling["factor"]
- if factor is None or not isinstance(factor, float) or factor < 1.0:
- logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
- attention_factor = rope_scaling.get("attention_factor")
- if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
- logger.warning(
- f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
- )
- beta_fast = rope_scaling.get("beta_fast")
- if beta_fast is not None and not isinstance(beta_fast, float):
- logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
- beta_slow = rope_scaling.get("beta_slow")
- if beta_slow is not None and not isinstance(beta_slow, float):
- logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
- if (beta_fast or 32) < (beta_slow or 1):
- logger.warning(
- f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
- f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
- )
- def _validate_longrope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
- rope_scaling = config.rope_scaling
- rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
- required_keys = {"rope_type", "short_factor", "long_factor"}
- # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
- optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
- received_keys = set(rope_scaling.keys())
- _check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)
- partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
- head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
- dim = int(head_dim * partial_rotary_factor)
- short_factor = rope_scaling.get("short_factor")
- if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
- logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
- if not len(short_factor) == dim // 2:
- logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
- long_factor = rope_scaling.get("long_factor")
- if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
- logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
- if not len(long_factor) == dim // 2:
- logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
- # Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
- # `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
- # unique to longrope (= undesirable)
- if hasattr(config, "original_max_position_embeddings"):
- logger.warning_once(
- "This model has set a `original_max_position_embeddings` field, to be used together with "
- "`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
- "with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
- "as it is compatible with most model architectures."
- )
- else:
- factor = rope_scaling.get("factor")
- if factor is None:
- logger.warning("Missing required keys in `rope_scaling`: 'factor'")
- elif not isinstance(factor, float) or factor < 1.0:
- logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
- attention_factor = rope_scaling.get("attention_factor")
- if attention_factor is not None:
- if not isinstance(attention_factor, float) or attention_factor < 0.0:
- logger.warning(
- f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
- )
- def _validate_llama3_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
- rope_scaling = config.rope_scaling
- rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
- required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
- received_keys = set(rope_scaling.keys())
- _check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)
- factor = rope_scaling["factor"]
- if factor is None or not isinstance(factor, float) or factor < 1.0:
- logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
- low_freq_factor = rope_scaling["low_freq_factor"]
- high_freq_factor = rope_scaling["high_freq_factor"]
- if low_freq_factor is None or not isinstance(low_freq_factor, float):
- logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
- if high_freq_factor is None or not isinstance(high_freq_factor, float):
- logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
- if high_freq_factor <= low_freq_factor:
- logger.warning(
- "`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
- f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
- )
- original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
- if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
- logger.warning(
- "`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
- f"{original_max_position_embeddings}"
- )
- if original_max_position_embeddings >= config.max_position_embeddings:
- logger.warning(
- "`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
- f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
- )
- # Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
- ROPE_VALIDATION_FUNCTIONS = {
- "default": _validate_default_rope_parameters,
- "linear": _validate_linear_scaling_rope_parameters,
- "dynamic": _validate_dynamic_scaling_rope_parameters,
- "yarn": _validate_yarn_parameters,
- "longrope": _validate_longrope_parameters,
- "llama3": _validate_llama3_parameters,
- }
- def rope_config_validation(config: PretrainedConfig, ignore_keys: Optional[set] = None):
- """
- Validate the RoPE config arguments, given a `PretrainedConfig` object
- """
- rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
- if rope_scaling is None:
- return
- # BC: "rope_type" was originally "type"
- rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
- validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
- if validation_fn is not None:
- validation_fn(config, ignore_keys=ignore_keys)
- else:
- logger.warning(
- f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
- )
|