| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482 |
- # coding=utf-8
- # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch ALBERT model."""
- import math
- import os
- from dataclasses import dataclass
- from typing import Dict, List, Optional, Tuple, Union
- import torch
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPooling,
- MaskedLMOutput,
- MultipleChoiceModelOutput,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import (
- apply_chunking_to_forward,
- find_pruneable_heads_and_indices,
- is_torch_greater_or_equal_than_2_2,
- prune_linear_layer,
- )
- from ...utils import (
- ModelOutput,
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from .configuration_albert import AlbertConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "albert/albert-base-v2"
- _CONFIG_FOR_DOC = "AlbertConfig"
- def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
- """Load tf checkpoints in a pytorch model."""
- try:
- import re
- import numpy as np
- import tensorflow as tf
- except ImportError:
- logger.error(
- "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions."
- )
- raise
- tf_path = os.path.abspath(tf_checkpoint_path)
- logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- names = []
- arrays = []
- for name, shape in init_vars:
- logger.info(f"Loading TF weight {name} with shape {shape}")
- array = tf.train.load_variable(tf_path, name)
- names.append(name)
- arrays.append(array)
- for name, array in zip(names, arrays):
- print(name)
- for name, array in zip(names, arrays):
- original_name = name
- # If saved from the TF HUB module
- name = name.replace("module/", "")
- # Renaming and simplifying
- name = name.replace("ffn_1", "ffn")
- name = name.replace("bert/", "albert/")
- name = name.replace("attention_1", "attention")
- name = name.replace("transform/", "")
- name = name.replace("LayerNorm_1", "full_layer_layer_norm")
- name = name.replace("LayerNorm", "attention/LayerNorm")
- name = name.replace("transformer/", "")
- # The feed forward layer had an 'intermediate' step which has been abstracted away
- name = name.replace("intermediate/dense/", "")
- name = name.replace("ffn/intermediate/output/dense/", "ffn_output/")
- # ALBERT attention was split between self and output which have been abstracted away
- name = name.replace("/output/", "/")
- name = name.replace("/self/", "/")
- # The pooler is a linear layer
- name = name.replace("pooler/dense", "pooler")
- # The classifier was simplified to predictions from cls/predictions
- name = name.replace("cls/predictions", "predictions")
- name = name.replace("predictions/attention", "predictions")
- # Naming was changed to be more explicit
- name = name.replace("embeddings/attention", "embeddings")
- name = name.replace("inner_group_", "albert_layers/")
- name = name.replace("group_", "albert_layer_groups/")
- # Classifier
- if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name):
- name = "classifier/" + name
- # No ALBERT model currently handles the next sentence prediction task
- if "seq_relationship" in name:
- name = name.replace("seq_relationship/output_", "sop_classifier/classifier/")
- name = name.replace("weights", "weight")
- name = name.split("/")
- # Ignore the gradients applied by the LAMB/ADAM optimizers.
- if (
- "adam_m" in name
- or "adam_v" in name
- or "AdamWeightDecayOptimizer" in name
- or "AdamWeightDecayOptimizer_1" in name
- or "global_step" in name
- ):
- logger.info(f"Skipping {'/'.join(name)}")
- continue
- pointer = model
- for m_name in name:
- if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
- scope_names = re.split(r"_(\d+)", m_name)
- else:
- scope_names = [m_name]
- if scope_names[0] == "kernel" or scope_names[0] == "gamma":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
- pointer = getattr(pointer, "bias")
- elif scope_names[0] == "output_weights":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "squad":
- pointer = getattr(pointer, "classifier")
- else:
- try:
- pointer = getattr(pointer, scope_names[0])
- except AttributeError:
- logger.info(f"Skipping {'/'.join(name)}")
- continue
- if len(scope_names) >= 2:
- num = int(scope_names[1])
- pointer = pointer[num]
- if m_name[-11:] == "_embeddings":
- pointer = getattr(pointer, "weight")
- elif m_name == "kernel":
- array = np.transpose(array)
- try:
- if pointer.shape != array.shape:
- raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
- except ValueError as e:
- e.args += (pointer.shape, array.shape)
- raise
- print(f"Initialize PyTorch weight {name} from {original_name}")
- pointer.data = torch.from_numpy(array)
- return model
- class AlbertEmbeddings(nn.Module):
- """
- Construct the embeddings from word, position and token_type embeddings.
- """
- def __init__(self, config: AlbertConfig):
- super().__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
- self.register_buffer(
- "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
- )
- # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- past_key_values_length: int = 0,
- ) -> torch.Tensor:
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
- # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
- # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
- # issue #5664
- if token_type_ids is None:
- if hasattr(self, "token_type_ids"):
- buffered_token_type_ids = self.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + token_type_embeddings
- if self.position_embedding_type == "absolute":
- position_embeddings = self.position_embeddings(position_ids)
- embeddings += position_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- class AlbertAttention(nn.Module):
- def __init__(self, config: AlbertConfig):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads}"
- )
- self.num_attention_heads = config.num_attention_heads
- self.hidden_size = config.hidden_size
- self.attention_head_size = config.hidden_size // config.num_attention_heads
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob)
- self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.pruned_heads = set()
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- self.max_position_embeddings = config.max_position_embeddings
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
- # Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def prune_heads(self, heads: List[int]) -> None:
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.query = prune_linear_layer(self.query, index)
- self.key = prune_linear_layer(self.key, index)
- self.value = prune_linear_layer(self.value, index)
- self.dense = prune_linear_layer(self.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.num_attention_heads = self.num_attention_heads - len(heads)
- self.all_head_size = self.attention_head_size * self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: bool = False,
- ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
- mixed_query_layer = self.query(hidden_states)
- mixed_key_layer = self.key(hidden_states)
- mixed_value_layer = self.value(hidden_states)
- query_layer = self.transpose_for_scores(mixed_query_layer)
- key_layer = self.transpose_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
- attention_scores = attention_scores + attention_mask
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- seq_length = hidden_states.size()[1]
- position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
- position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
- distance = position_ids_l - position_ids_r
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
- if self.position_embedding_type == "relative_key":
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores
- elif self.position_embedding_type == "relative_key_query":
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.attention_dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.transpose(2, 1).flatten(2)
- projected_context_layer = self.dense(context_layer)
- projected_context_layer_dropout = self.output_dropout(projected_context_layer)
- layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout)
- return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,)
- class AlbertSdpaAttention(AlbertAttention):
- def __init__(self, config):
- super().__init__(config)
- self.dropout_prob = config.attention_probs_dropout_prob
- self.require_contiguous_qkv = not is_torch_greater_or_equal_than_2_2
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: bool = False,
- ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
- if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
- logger.warning(
- "AlbertSdpaAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
- "non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to "
- "the eager attention implementation, but specifying the eager implementation will be required from "
- "Transformers version v5.0.0 onwards. This warning can be removed using the argument "
- '`attn_implementation="eager"` when loading the model.'
- )
- return super().forward(hidden_states, attention_mask, head_mask, output_attentions)
- batch_size, seq_len, _ = hidden_states.size()
- query_layer = self.transpose_for_scores(self.query(hidden_states))
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- # SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
- # attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
- # Reference: https://github.com/pytorch/pytorch/issues/112577
- if self.require_contiguous_qkv and query_layer.device.type == "cuda" and attention_mask is not None:
- query_layer = query_layer.contiguous()
- key_layer = key_layer.contiguous()
- value_layer = value_layer.contiguous()
- attention_output = torch.nn.functional.scaled_dot_product_attention(
- query=query_layer,
- key=key_layer,
- value=value_layer,
- attn_mask=attention_mask,
- dropout_p=self.dropout_prob if self.training else 0.0,
- is_causal=False,
- )
- attention_output = attention_output.transpose(1, 2)
- attention_output = attention_output.reshape(batch_size, seq_len, self.all_head_size)
- projected_context_layer = self.dense(attention_output)
- projected_context_layer_dropout = self.output_dropout(projected_context_layer)
- layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout)
- return (layernormed_context_layer,)
- ALBERT_ATTENTION_CLASSES = {
- "eager": AlbertAttention,
- "sdpa": AlbertSdpaAttention,
- }
- class AlbertLayer(nn.Module):
- def __init__(self, config: AlbertConfig):
- super().__init__()
- self.config = config
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.attention = ALBERT_ATTENTION_CLASSES[config._attn_implementation](config)
- self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
- self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
- self.activation = ACT2FN[config.hidden_act]
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: bool = False,
- output_hidden_states: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
- ffn_output = apply_chunking_to_forward(
- self.ff_chunk,
- self.chunk_size_feed_forward,
- self.seq_len_dim,
- attention_output[0],
- )
- hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])
- return (hidden_states,) + attention_output[1:] # add attentions if we output them
- def ff_chunk(self, attention_output: torch.Tensor) -> torch.Tensor:
- ffn_output = self.ffn(attention_output)
- ffn_output = self.activation(ffn_output)
- ffn_output = self.ffn_output(ffn_output)
- return ffn_output
- class AlbertLayerGroup(nn.Module):
- def __init__(self, config: AlbertConfig):
- super().__init__()
- self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: bool = False,
- output_hidden_states: bool = False,
- ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
- layer_hidden_states = ()
- layer_attentions = ()
- for layer_index, albert_layer in enumerate(self.albert_layers):
- layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions)
- hidden_states = layer_output[0]
- if output_attentions:
- layer_attentions = layer_attentions + (layer_output[1],)
- if output_hidden_states:
- layer_hidden_states = layer_hidden_states + (hidden_states,)
- outputs = (hidden_states,)
- if output_hidden_states:
- outputs = outputs + (layer_hidden_states,)
- if output_attentions:
- outputs = outputs + (layer_attentions,)
- return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
- class AlbertTransformer(nn.Module):
- def __init__(self, config: AlbertConfig):
- super().__init__()
- self.config = config
- self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
- self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: bool = False,
- output_hidden_states: bool = False,
- return_dict: bool = True,
- ) -> Union[BaseModelOutput, Tuple]:
- hidden_states = self.embedding_hidden_mapping_in(hidden_states)
- all_hidden_states = (hidden_states,) if output_hidden_states else None
- all_attentions = () if output_attentions else None
- head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask
- for i in range(self.config.num_hidden_layers):
- # Number of layers in a hidden group
- layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
- # Index of the hidden group
- group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
- layer_group_output = self.albert_layer_groups[group_idx](
- hidden_states,
- attention_mask,
- head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
- output_attentions,
- output_hidden_states,
- )
- hidden_states = layer_group_output[0]
- if output_attentions:
- all_attentions = all_attentions + layer_group_output[-1]
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
- )
- class AlbertPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = AlbertConfig
- load_tf_weights = load_tf_weights_in_albert
- base_model_prefix = "albert"
- _supports_sdpa = True
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- @dataclass
- class AlbertForPreTrainingOutput(ModelOutput):
- """
- Output type of [`AlbertForPreTraining`].
- Args:
- loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
- Total loss as the sum of the masked language modeling loss and the next sequence prediction
- (classification) loss.
- prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
- Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
- before SoftMax).
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- loss: Optional[torch.FloatTensor] = None
- prediction_logits: torch.FloatTensor = None
- sop_logits: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- ALBERT_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Args:
- config ([`AlbertConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- ALBERT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
- [`PreTrainedTokenizer.encode`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.",
- ALBERT_START_DOCSTRING,
- )
- class AlbertModel(AlbertPreTrainedModel):
- config_class = AlbertConfig
- base_model_prefix = "albert"
- def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True):
- super().__init__(config)
- self.config = config
- self.embeddings = AlbertEmbeddings(config)
- self.encoder = AlbertTransformer(config)
- if add_pooling_layer:
- self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
- self.pooler_activation = nn.Tanh()
- else:
- self.pooler = None
- self.pooler_activation = None
- self.attn_implementation = config._attn_implementation
- self.position_embedding_type = config.position_embedding_type
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Embedding:
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value: nn.Embedding) -> None:
- self.embeddings.word_embeddings = value
- def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has
- a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT
- model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers.
- These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
- while [2,3] correspond to the two inner groups of the second hidden layer.
- Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more
- information about head pruning
- """
- for layer, heads in heads_to_prune.items():
- group_idx = int(layer / self.config.inner_group_num)
- inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
- self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPooling,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[BaseModelOutputWithPooling, Tuple]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- batch_size, seq_length = input_shape
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- if token_type_ids is None:
- if hasattr(self.embeddings, "token_type_ids"):
- buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- embedding_output = self.embeddings(
- input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
- )
- use_sdpa_attention_mask = (
- self.attn_implementation == "sdpa"
- and self.position_embedding_type == "absolute"
- and head_mask is None
- and not output_attentions
- )
- if use_sdpa_attention_mask:
- extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
- attention_mask, embedding_output.dtype, tgt_len=seq_length
- )
- else:
- extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
- extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
- extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- encoder_outputs = self.encoder(
- embedding_output,
- extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- """
- Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
- `sentence order prediction (classification)` head.
- """,
- ALBERT_START_DOCSTRING,
- )
- class AlbertForPreTraining(AlbertPreTrainedModel):
- _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
- def __init__(self, config: AlbertConfig):
- super().__init__(config)
- self.albert = AlbertModel(config)
- self.predictions = AlbertMLMHead(config)
- self.sop_classifier = AlbertSOPHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self) -> nn.Linear:
- return self.predictions.decoder
- def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
- self.predictions.decoder = new_embeddings
- def get_input_embeddings(self) -> nn.Embedding:
- return self.albert.embeddings.word_embeddings
- @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- sentence_order_label: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[AlbertForPreTrainingOutput, Tuple]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- sentence_order_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
- (see `input_ids` docstring) Indices should be in `[0, 1]`. `0` indicates original order (sequence A, then
- sequence B), `1` indicates switched order (sequence B, then sequence A).
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, AlbertForPreTraining
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
- >>> model = AlbertForPreTraining.from_pretrained("albert/albert-base-v2")
- >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
- >>> # Batch size 1
- >>> outputs = model(input_ids)
- >>> prediction_logits = outputs.prediction_logits
- >>> sop_logits = outputs.sop_logits
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.albert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output, pooled_output = outputs[:2]
- prediction_scores = self.predictions(sequence_output)
- sop_scores = self.sop_classifier(pooled_output)
- total_loss = None
- if labels is not None and sentence_order_label is not None:
- loss_fct = CrossEntropyLoss()
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1))
- total_loss = masked_lm_loss + sentence_order_loss
- if not return_dict:
- output = (prediction_scores, sop_scores) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return AlbertForPreTrainingOutput(
- loss=total_loss,
- prediction_logits=prediction_scores,
- sop_logits=sop_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- class AlbertMLMHead(nn.Module):
- def __init__(self, config: AlbertConfig):
- super().__init__()
- self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- self.dense = nn.Linear(config.hidden_size, config.embedding_size)
- self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
- self.activation = ACT2FN[config.hidden_act]
- self.decoder.bias = self.bias
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.activation(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- hidden_states = self.decoder(hidden_states)
- prediction_scores = hidden_states
- return prediction_scores
- def _tie_weights(self) -> None:
- # For accelerate compatibility and to not break backward compatibility
- if self.decoder.bias.device.type == "meta":
- self.decoder.bias = self.bias
- else:
- # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
- self.bias = self.decoder.bias
- class AlbertSOPHead(nn.Module):
- def __init__(self, config: AlbertConfig):
- super().__init__()
- self.dropout = nn.Dropout(config.classifier_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
- dropout_pooled_output = self.dropout(pooled_output)
- logits = self.classifier(dropout_pooled_output)
- return logits
- @add_start_docstrings(
- "Albert Model with a `language modeling` head on top.",
- ALBERT_START_DOCSTRING,
- )
- class AlbertForMaskedLM(AlbertPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
- def __init__(self, config):
- super().__init__(config)
- self.albert = AlbertModel(config, add_pooling_layer=False)
- self.predictions = AlbertMLMHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self) -> nn.Linear:
- return self.predictions.decoder
- def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
- self.predictions.decoder = new_embeddings
- self.predictions.bias = new_embeddings.bias
- def get_input_embeddings(self) -> nn.Embedding:
- return self.albert.embeddings.word_embeddings
- @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[MaskedLMOutput, Tuple]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- Returns:
- Example:
- ```python
- >>> import torch
- >>> from transformers import AutoTokenizer, AlbertForMaskedLM
- >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
- >>> model = AlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
- >>> # add mask_token
- >>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt")
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> # retrieve index of [MASK]
- >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
- >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
- >>> tokenizer.decode(predicted_token_id)
- 'france'
- ```
- ```python
- >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
- >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
- >>> outputs = model(**inputs, labels=labels)
- >>> round(outputs.loss.item(), 2)
- 0.81
- ```
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.albert(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_outputs = outputs[0]
- prediction_scores = self.predictions(sequence_outputs)
- masked_lm_loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (prediction_scores,) + outputs[2:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return MaskedLMOutput(
- loss=masked_lm_loss,
- logits=prediction_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
- output) e.g. for GLUE tasks.
- """,
- ALBERT_START_DOCSTRING,
- )
- class AlbertForSequenceClassification(AlbertPreTrainedModel):
- def __init__(self, config: AlbertConfig):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.config = config
- self.albert = AlbertModel(config)
- self.dropout = nn.Dropout(config.classifier_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint="textattack/albert-base-v2-imdb",
- output_type=SequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output="'LABEL_1'",
- expected_loss=0.12,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[SequenceClassifierOutput, Tuple]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.albert(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- ALBERT_START_DOCSTRING,
- )
- class AlbertForTokenClassification(AlbertPreTrainedModel):
- def __init__(self, config: AlbertConfig):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.albert = AlbertModel(config, add_pooling_layer=False)
- classifier_dropout_prob = (
- config.classifier_dropout_prob
- if config.classifier_dropout_prob is not None
- else config.hidden_dropout_prob
- )
- self.dropout = nn.Dropout(classifier_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[TokenClassifierOutput, Tuple]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.albert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
- layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- ALBERT_START_DOCSTRING,
- )
- class AlbertForQuestionAnswering(AlbertPreTrainedModel):
- def __init__(self, config: AlbertConfig):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.albert = AlbertModel(config, add_pooling_layer=False)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint="twmkn9/albert-base-v2-squad2",
- output_type=QuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- qa_target_start_index=12,
- qa_target_end_index=13,
- expected_output="'a nice puppet'",
- expected_loss=7.36,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[AlbertForPreTrainingOutput, Tuple]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.albert(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits: torch.Tensor = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
- softmax) e.g. for RocStories/SWAG tasks.
- """,
- ALBERT_START_DOCSTRING,
- )
- class AlbertForMultipleChoice(AlbertPreTrainedModel):
- def __init__(self, config: AlbertConfig):
- super().__init__(config)
- self.albert = AlbertModel(config)
- self.dropout = nn.Dropout(config.classifier_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, 1)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MultipleChoiceModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[AlbertForPreTrainingOutput, Tuple]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
- num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
- *input_ids* above)
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
- input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
- attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
- token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
- position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
- inputs_embeds = (
- inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
- if inputs_embeds is not None
- else None
- )
- outputs = self.albert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits: torch.Tensor = self.classifier(pooled_output)
- reshaped_logits = logits.view(-1, num_choices)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(reshaped_logits, labels)
- if not return_dict:
- output = (reshaped_logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return MultipleChoiceModelOutput(
- loss=loss,
- logits=reshaped_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- __all__ = [
- "load_tf_weights_in_albert",
- "AlbertPreTrainedModel",
- "AlbertModel",
- "AlbertForPreTraining",
- "AlbertForMaskedLM",
- "AlbertForSequenceClassification",
- "AlbertForTokenClassification",
- "AlbertForQuestionAnswering",
- "AlbertForMultipleChoice",
- ]
|