| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ALIGN model configuration"""
- import os
- from typing import TYPE_CHECKING, List, Union
- if TYPE_CHECKING:
- pass
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class AlignTextConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`AlignTextModel`]. It is used to instantiate a
- ALIGN text encoder according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the text encoder of the ALIGN
- [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values here are
- copied from BERT.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 30522):
- Vocabulary size of the Align Text model. Defines the number of different tokens that can be represented by
- the `inputs_ids` passed when calling [`AlignTextModel`].
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
- hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
- hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- max_position_embeddings (`int`, *optional*, defaults to 512):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- type_vocab_size (`int`, *optional*, defaults to 2):
- The vocabulary size of the `token_type_ids` passed when calling [`AlignTextModel`].
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- pad_token_id (`int`, *optional*, defaults to 0):
- Padding token id.
- position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
- Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
- positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
- [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
- For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
- with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`.
- Example:
- ```python
- >>> from transformers import AlignTextConfig, AlignTextModel
- >>> # Initializing a AlignTextConfig with kakaobrain/align-base style configuration
- >>> configuration = AlignTextConfig()
- >>> # Initializing a AlignTextModel (with random weights) from the kakaobrain/align-base style configuration
- >>> model = AlignTextModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "align_text_model"
- def __init__(
- self,
- vocab_size=30522,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=2,
- initializer_range=0.02,
- layer_norm_eps=1e-12,
- pad_token_id=0,
- position_embedding_type="absolute",
- use_cache=True,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.hidden_act = hidden_act
- self.intermediate_size = intermediate_size
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.position_embedding_type = position_embedding_type
- self.use_cache = use_cache
- self.pad_token_id = pad_token_id
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
- # get the text config dict if we are loading from AlignConfig
- if config_dict.get("model_type") == "align":
- config_dict = config_dict["text_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class AlignVisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`AlignVisionModel`]. It is used to instantiate a
- ALIGN vision encoder according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the vision encoder of the ALIGN
- [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values are copied
- from EfficientNet (efficientnet-b7)
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- num_channels (`int`, *optional*, defaults to 3):
- The number of input channels.
- image_size (`int`, *optional*, defaults to 600):
- The input image size.
- width_coefficient (`float`, *optional*, defaults to 2.0):
- Scaling coefficient for network width at each stage.
- depth_coefficient (`float`, *optional*, defaults to 3.1):
- Scaling coefficient for network depth at each stage.
- depth_divisor `int`, *optional*, defaults to 8):
- A unit of network width.
- kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
- List of kernel sizes to be used in each block.
- in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
- List of input channel sizes to be used in each block for convolutional layers.
- out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
- List of output channel sizes to be used in each block for convolutional layers.
- depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
- List of block indices with square padding.
- strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
- List of stride sizes to be used in each block for convolutional layers.
- num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
- List of the number of times each block is to repeated.
- expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
- List of scaling coefficient of each block.
- squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
- Squeeze expansion ratio.
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
- `"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
- hidden_dim (`int`, *optional*, defaults to 1280):
- The hidden dimension of the layer before the classification head.
- pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
- Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
- `"max"`]
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- batch_norm_eps (`float`, *optional*, defaults to 1e-3):
- The epsilon used by the batch normalization layers.
- batch_norm_momentum (`float`, *optional*, defaults to 0.99):
- The momentum used by the batch normalization layers.
- drop_connect_rate (`float`, *optional*, defaults to 0.2):
- The drop rate for skip connections.
- Example:
- ```python
- >>> from transformers import AlignVisionConfig, AlignVisionModel
- >>> # Initializing a AlignVisionConfig with kakaobrain/align-base style configuration
- >>> configuration = AlignVisionConfig()
- >>> # Initializing a AlignVisionModel (with random weights) from the kakaobrain/align-base style configuration
- >>> model = AlignVisionModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "align_vision_model"
- def __init__(
- self,
- num_channels: int = 3,
- image_size: int = 600,
- width_coefficient: float = 2.0,
- depth_coefficient: float = 3.1,
- depth_divisor: int = 8,
- kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
- in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
- out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
- depthwise_padding: List[int] = [],
- strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
- num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
- expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
- squeeze_expansion_ratio: float = 0.25,
- hidden_act: str = "swish",
- hidden_dim: int = 2560,
- pooling_type: str = "mean",
- initializer_range: float = 0.02,
- batch_norm_eps: float = 0.001,
- batch_norm_momentum: float = 0.99,
- drop_connect_rate: float = 0.2,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.num_channels = num_channels
- self.image_size = image_size
- self.width_coefficient = width_coefficient
- self.depth_coefficient = depth_coefficient
- self.depth_divisor = depth_divisor
- self.kernel_sizes = kernel_sizes
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.depthwise_padding = depthwise_padding
- self.strides = strides
- self.num_block_repeats = num_block_repeats
- self.expand_ratios = expand_ratios
- self.squeeze_expansion_ratio = squeeze_expansion_ratio
- self.hidden_act = hidden_act
- self.hidden_dim = hidden_dim
- self.pooling_type = pooling_type
- self.initializer_range = initializer_range
- self.batch_norm_eps = batch_norm_eps
- self.batch_norm_momentum = batch_norm_momentum
- self.drop_connect_rate = drop_connect_rate
- self.num_hidden_layers = sum(num_block_repeats) * 4
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
- # get the vision config dict if we are loading from AlignConfig
- if config_dict.get("model_type") == "align":
- config_dict = config_dict["vision_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class AlignConfig(PretrainedConfig):
- r"""
- [`AlignConfig`] is the configuration class to store the configuration of a [`AlignModel`]. It is used to
- instantiate a ALIGN model according to the specified arguments, defining the text model and vision model configs.
- Instantiating a configuration with the defaults will yield a similar configuration to that of the ALIGN
- [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- text_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`AlignTextConfig`].
- vision_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`AlignVisionConfig`].
- projection_dim (`int`, *optional*, defaults to 640):
- Dimensionality of text and vision projection layers.
- temperature_init_value (`float`, *optional*, defaults to 1.0):
- The initial value of the *temperature* parameter. Default is used as per the original ALIGN implementation.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- kwargs (*optional*):
- Dictionary of keyword arguments.
- Example:
- ```python
- >>> from transformers import AlignConfig, AlignModel
- >>> # Initializing a AlignConfig with kakaobrain/align-base style configuration
- >>> configuration = AlignConfig()
- >>> # Initializing a AlignModel (with random weights) from the kakaobrain/align-base style configuration
- >>> model = AlignModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- >>> # We can also initialize a AlignConfig from a AlignTextConfig and a AlignVisionConfig
- >>> from transformers import AlignTextConfig, AlignVisionConfig
- >>> # Initializing ALIGN Text and Vision configurations
- >>> config_text = AlignTextConfig()
- >>> config_vision = AlignVisionConfig()
- >>> config = AlignConfig.from_text_vision_configs(config_text, config_vision)
- ```"""
- model_type = "align"
- def __init__(
- self,
- text_config=None,
- vision_config=None,
- projection_dim=640,
- temperature_init_value=1.0,
- initializer_range=0.02,
- **kwargs,
- ):
- super().__init__(**kwargs)
- if text_config is None:
- text_config = {}
- logger.info("text_config is None. Initializing the AlignTextConfig with default values.")
- if vision_config is None:
- vision_config = {}
- logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.")
- self.text_config = AlignTextConfig(**text_config)
- self.vision_config = AlignVisionConfig(**vision_config)
- self.projection_dim = projection_dim
- self.temperature_init_value = temperature_init_value
- self.initializer_range = initializer_range
- @classmethod
- def from_text_vision_configs(cls, text_config: AlignTextConfig, vision_config: AlignVisionConfig, **kwargs):
- r"""
- Instantiate a [`AlignConfig`] (or a derived class) from align text model configuration and align vision model
- configuration.
- Returns:
- [`AlignConfig`]: An instance of a configuration object
- """
- return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
- __all__ = ["AlignTextConfig", "AlignVisionConfig", "AlignConfig"]
|