| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641 |
- # coding=utf-8
- # Copyright 2023 The Google Research Team Authors and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch ALIGN model."""
- import math
- from dataclasses import dataclass
- from typing import Any, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutputWithNoAttention,
- BaseModelOutputWithPastAndCrossAttentions,
- BaseModelOutputWithPoolingAndCrossAttentions,
- BaseModelOutputWithPoolingAndNoAttention,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import (
- ModelOutput,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from .configuration_align import AlignConfig, AlignTextConfig, AlignVisionConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "kakaobrain/align-base"
- _CONFIG_FOR_DOC = "AlignConfig"
- ALIGN_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`AlignConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- ALIGN_TEXT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- ALIGN_VISION_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
- [`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- ALIGN_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
- [`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details.
- return_loss (`bool`, *optional*):
- Whether or not to return the contrastive loss.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @dataclass
- class AlignVisionModelOutput(ModelOutput):
- """
- Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
- Args:
- image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
- The image embeddings obtained by applying the projection layer to the pooler_output.
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- """
- image_embeds: Optional[torch.FloatTensor] = None
- last_hidden_state: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- @dataclass
- class AlignTextModelOutput(ModelOutput):
- """
- Base class for text model's outputs that also contains a pooling of the last hidden states.
- Args:
- text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
- The text embeddings obtained by applying the projection layer to the pooler_output.
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- text_embeds: Optional[torch.FloatTensor] = None
- last_hidden_state: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- @dataclass
- class AlignOutput(ModelOutput):
- """
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
- Contrastive loss for image-text similarity.
- logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
- The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
- similarity scores.
- logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
- The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
- similarity scores.
- text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The text embeddings obtained by applying the projection layer to the pooled output of [`AlignTextModel`].
- image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The output of [`AlignVisionModel`].
- text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
- The output of the [`AlignTextModel`].
- vision_model_output(`BaseModelOutputWithPoolingAndNoAttention`):
- The output of the [`AlignVisionModel`].
- """
- loss: Optional[torch.FloatTensor] = None
- logits_per_image: torch.FloatTensor = None
- logits_per_text: torch.FloatTensor = None
- text_embeds: torch.FloatTensor = None
- image_embeds: torch.FloatTensor = None
- text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
- vision_model_output: BaseModelOutputWithPoolingAndNoAttention = None
- def to_tuple(self) -> Tuple[Any]:
- return tuple(
- self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
- for k in self.keys()
- )
- # contrastive loss function, adapted from
- # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
- def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
- return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device), label_smoothing=0.1)
- def align_loss(similarity: torch.Tensor) -> torch.Tensor:
- caption_loss = contrastive_loss(similarity)
- image_loss = contrastive_loss(similarity.t())
- return (caption_loss + image_loss) / 2.0
- # Copied from transformers.models.efficientnet.modeling_efficientnet.round_filters with EfficientNet->AlignVision
- def round_filters(config: AlignVisionConfig, num_channels: int):
- r"""
- Round number of filters based on depth multiplier.
- """
- divisor = config.depth_divisor
- num_channels *= config.width_coefficient
- new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
- # Make sure that round down does not go down by more than 10%.
- if new_dim < 0.9 * num_channels:
- new_dim += divisor
- return int(new_dim)
- # Copied from transformers.models.efficientnet.modeling_efficientnet.correct_pad
- def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
- r"""
- Utility function to get the tuple padding value for the depthwise convolution.
- Args:
- kernel_size (`int` or `tuple`):
- Kernel size of the convolution layers.
- adjust (`bool`, *optional*, defaults to `True`):
- Adjusts padding value to apply to right and bottom sides of the input.
- """
- if isinstance(kernel_size, int):
- kernel_size = (kernel_size, kernel_size)
- correct = (kernel_size[0] // 2, kernel_size[1] // 2)
- if adjust:
- return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
- else:
- return (correct[1], correct[1], correct[0], correct[0])
- # Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetEmbeddings with EfficientNet->AlignVision
- class AlignVisionEmbeddings(nn.Module):
- r"""
- A module that corresponds to the stem module of the original work.
- """
- def __init__(self, config: AlignVisionConfig):
- super().__init__()
- self.out_dim = round_filters(config, 32)
- self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
- self.convolution = nn.Conv2d(
- config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
- )
- self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
- self.activation = ACT2FN[config.hidden_act]
- def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
- features = self.padding(pixel_values)
- features = self.convolution(features)
- features = self.batchnorm(features)
- features = self.activation(features)
- return features
- # Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetDepthwiseConv2d with EfficientNet->AlignVision
- class AlignVisionDepthwiseConv2d(nn.Conv2d):
- def __init__(
- self,
- in_channels,
- depth_multiplier=1,
- kernel_size=3,
- stride=1,
- padding=0,
- dilation=1,
- bias=True,
- padding_mode="zeros",
- ):
- out_channels = in_channels * depth_multiplier
- super().__init__(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- groups=in_channels,
- bias=bias,
- padding_mode=padding_mode,
- )
- # Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetExpansionLayer with EfficientNet->AlignVision
- class AlignVisionExpansionLayer(nn.Module):
- r"""
- This corresponds to the expansion phase of each block in the original implementation.
- """
- def __init__(self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int):
- super().__init__()
- self.expand_conv = nn.Conv2d(
- in_channels=in_dim,
- out_channels=out_dim,
- kernel_size=1,
- padding="same",
- bias=False,
- )
- self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
- self.expand_act = ACT2FN[config.hidden_act]
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- # Expand phase
- hidden_states = self.expand_conv(hidden_states)
- hidden_states = self.expand_bn(hidden_states)
- hidden_states = self.expand_act(hidden_states)
- return hidden_states
- # Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetDepthwiseLayer with EfficientNet->AlignVision
- class AlignVisionDepthwiseLayer(nn.Module):
- r"""
- This corresponds to the depthwise convolution phase of each block in the original implementation.
- """
- def __init__(
- self,
- config: AlignVisionConfig,
- in_dim: int,
- stride: int,
- kernel_size: int,
- adjust_padding: bool,
- ):
- super().__init__()
- self.stride = stride
- conv_pad = "valid" if self.stride == 2 else "same"
- padding = correct_pad(kernel_size, adjust=adjust_padding)
- self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
- self.depthwise_conv = AlignVisionDepthwiseConv2d(
- in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
- )
- self.depthwise_norm = nn.BatchNorm2d(
- num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
- )
- self.depthwise_act = ACT2FN[config.hidden_act]
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- # Depthwise convolution
- if self.stride == 2:
- hidden_states = self.depthwise_conv_pad(hidden_states)
- hidden_states = self.depthwise_conv(hidden_states)
- hidden_states = self.depthwise_norm(hidden_states)
- hidden_states = self.depthwise_act(hidden_states)
- return hidden_states
- # Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetSqueezeExciteLayer with EfficientNet->AlignVision
- class AlignVisionSqueezeExciteLayer(nn.Module):
- r"""
- This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
- """
- def __init__(self, config: AlignVisionConfig, in_dim: int, expand_dim: int, expand: bool = False):
- super().__init__()
- self.dim = expand_dim if expand else in_dim
- self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
- self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
- self.reduce = nn.Conv2d(
- in_channels=self.dim,
- out_channels=self.dim_se,
- kernel_size=1,
- padding="same",
- )
- self.expand = nn.Conv2d(
- in_channels=self.dim_se,
- out_channels=self.dim,
- kernel_size=1,
- padding="same",
- )
- self.act_reduce = ACT2FN[config.hidden_act]
- self.act_expand = nn.Sigmoid()
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- inputs = hidden_states
- hidden_states = self.squeeze(hidden_states)
- hidden_states = self.reduce(hidden_states)
- hidden_states = self.act_reduce(hidden_states)
- hidden_states = self.expand(hidden_states)
- hidden_states = self.act_expand(hidden_states)
- hidden_states = torch.mul(inputs, hidden_states)
- return hidden_states
- class AlignVisionFinalBlockLayer(nn.Module):
- r"""
- This corresponds to the final phase of each block in the original implementation.
- """
- def __init__(
- self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
- ):
- super().__init__()
- self.apply_dropout = stride == 1 and not id_skip
- self.project_conv = nn.Conv2d(
- in_channels=in_dim,
- out_channels=out_dim,
- kernel_size=1,
- padding="same",
- bias=False,
- )
- self.project_bn = nn.BatchNorm2d(
- num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
- )
- self.dropout = nn.Dropout(p=drop_rate)
- def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
- hidden_states = self.project_conv(hidden_states)
- hidden_states = self.project_bn(hidden_states)
- if self.apply_dropout:
- hidden_states = self.dropout(hidden_states)
- hidden_states = hidden_states + embeddings
- return hidden_states
- class AlignVisionBlock(nn.Module):
- r"""
- This corresponds to the block module of original the EfficientNet vision encoder implementation.
- Args:
- config ([`AlignVisionConfig`]):
- Model configuration class.
- in_dim (`int`):
- Number of input channels.
- out_dim (`int`):
- Number of output channels.
- stride (`int`):
- Stride size to be used in convolution layers.
- expand_ratio (`int`):
- Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
- kernel_size (`int`):
- Kernel size for the depthwise convolution layer.
- drop_rate (`float`):
- Dropout rate to be used in the final phase of each block.
- id_skip (`bool`):
- Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
- of each block. Set to `True` for the first block of each stage.
- adjust_padding (`bool`):
- Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
- operation, set to `True` for inputs with odd input sizes.
- """
- def __init__(
- self,
- config: AlignVisionConfig,
- in_dim: int,
- out_dim: int,
- stride: int,
- expand_ratio: int,
- kernel_size: int,
- drop_rate: float,
- id_skip: bool,
- adjust_padding: bool,
- ):
- super().__init__()
- self.expand_ratio = expand_ratio
- self.expand = True if self.expand_ratio != 1 else False
- expand_in_dim = in_dim * expand_ratio
- if self.expand:
- self.expansion = AlignVisionExpansionLayer(
- config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
- )
- self.depthwise_conv = AlignVisionDepthwiseLayer(
- config=config,
- in_dim=expand_in_dim if self.expand else in_dim,
- stride=stride,
- kernel_size=kernel_size,
- adjust_padding=adjust_padding,
- )
- self.squeeze_excite = AlignVisionSqueezeExciteLayer(
- config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
- )
- self.projection = AlignVisionFinalBlockLayer(
- config=config,
- in_dim=expand_in_dim if self.expand else in_dim,
- out_dim=out_dim,
- stride=stride,
- drop_rate=drop_rate,
- id_skip=id_skip,
- )
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- embeddings = hidden_states
- # Expansion and depthwise convolution phase
- if self.expand_ratio != 1:
- hidden_states = self.expansion(hidden_states)
- hidden_states = self.depthwise_conv(hidden_states)
- # Squeeze and excite phase
- hidden_states = self.squeeze_excite(hidden_states)
- hidden_states = self.projection(embeddings, hidden_states)
- return hidden_states
- class AlignVisionEncoder(nn.Module):
- r"""
- Forward propogates the embeddings through each vision encoder (EfficientNet) block.
- Args:
- config ([`AlignVisionConfig`]):
- Model configuration class.
- """
- def __init__(self, config: AlignVisionConfig):
- super().__init__()
- self.depth_coefficient = config.depth_coefficient
- def round_repeats(repeats):
- # Round number of block repeats based on depth multiplier.
- return int(math.ceil(self.depth_coefficient * repeats))
- num_base_blocks = len(config.in_channels)
- num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
- curr_block_num = 0
- blocks = []
- for i in range(num_base_blocks):
- in_dim = round_filters(config, config.in_channels[i])
- out_dim = round_filters(config, config.out_channels[i])
- stride = config.strides[i]
- kernel_size = config.kernel_sizes[i]
- expand_ratio = config.expand_ratios[i]
- for j in range(round_repeats(config.num_block_repeats[i])):
- id_skip = True if j == 0 else False
- stride = 1 if j > 0 else stride
- in_dim = out_dim if j > 0 else in_dim
- adjust_padding = False if curr_block_num in config.depthwise_padding else True
- drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
- block = AlignVisionBlock(
- config=config,
- in_dim=in_dim,
- out_dim=out_dim,
- stride=stride,
- kernel_size=kernel_size,
- expand_ratio=expand_ratio,
- drop_rate=drop_rate,
- id_skip=id_skip,
- adjust_padding=adjust_padding,
- )
- blocks.append(block)
- curr_block_num += 1
- self.blocks = nn.ModuleList(blocks)
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> BaseModelOutputWithPoolingAndNoAttention:
- all_hidden_states = (hidden_states,) if output_hidden_states else None
- for block in self.blocks:
- hidden_states = block(hidden_states)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
- return BaseModelOutputWithNoAttention(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- )
- # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->AlignText
- class AlignTextEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super().__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- self.register_buffer(
- "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- past_key_values_length: int = 0,
- ) -> torch.Tensor:
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
- # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
- # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
- # issue #5664
- if token_type_ids is None:
- if hasattr(self, "token_type_ids"):
- buffered_token_type_ids = self.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + token_type_embeddings
- if self.position_embedding_type == "absolute":
- position_embeddings = self.position_embeddings(position_ids)
- embeddings += position_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->AlignText
- class AlignTextSelfAttention(nn.Module):
- def __init__(self, config, position_embedding_type=None):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- self.position_embedding_type = position_embedding_type or getattr(
- config, "position_embedding_type", "absolute"
- )
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- self.max_position_embeddings = config.max_position_embeddings
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
- self.is_decoder = config.is_decoder
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- mixed_query_layer = self.query(hidden_states)
- # If this is instantiated as a cross-attention module, the keys
- # and values come from an encoder; the attention mask needs to be
- # such that the encoder's padding tokens are not attended to.
- is_cross_attention = encoder_hidden_states is not None
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_layer = past_key_value[0]
- value_layer = past_key_value[1]
- attention_mask = encoder_attention_mask
- elif is_cross_attention:
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
- attention_mask = encoder_attention_mask
- elif past_key_value is not None:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
- else:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- query_layer = self.transpose_for_scores(mixed_query_layer)
- use_cache = past_key_value is not None
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_layer, value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- query_length, key_length = query_layer.shape[2], key_layer.shape[2]
- if use_cache:
- position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
- -1, 1
- )
- else:
- position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
- position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
- distance = position_ids_l - position_ids_r
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
- if self.position_embedding_type == "relative_key":
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores
- elif self.position_embedding_type == "relative_key_query":
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in AlignTextModel forward() function)
- attention_scores = attention_scores + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- if self.is_decoder:
- outputs = outputs + (past_key_value,)
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->AlignText
- class AlignTextSelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- ALIGN_TEXT_SELF_ATTENTION_CLASSES = {
- "eager": AlignTextSelfAttention,
- }
- # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->AlignText,BERT->ALIGN_TEXT
- class AlignTextAttention(nn.Module):
- def __init__(self, config, position_embedding_type=None):
- super().__init__()
- self.self = ALIGN_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation](
- config, position_embedding_type=position_embedding_type
- )
- self.output = AlignTextSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.self.query = prune_linear_layer(self.self.query, index)
- self.self.key = prune_linear_layer(self.self.key, index)
- self.self.value = prune_linear_layer(self.self.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- self_outputs = self.self(
- hidden_states,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->AlignText
- class AlignTextIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->AlignText
- class AlignTextOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->AlignText
- class AlignTextLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = AlignTextAttention(config)
- self.is_decoder = config.is_decoder
- self.add_cross_attention = config.add_cross_attention
- if self.add_cross_attention:
- if not self.is_decoder:
- raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
- self.crossattention = AlignTextAttention(config, position_embedding_type="absolute")
- self.intermediate = AlignTextIntermediate(config)
- self.output = AlignTextOutput(config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- self_attention_outputs = self.attention(
- hidden_states,
- attention_mask,
- head_mask,
- output_attentions=output_attentions,
- past_key_value=self_attn_past_key_value,
- )
- attention_output = self_attention_outputs[0]
- # if decoder, the last output is tuple of self-attn cache
- if self.is_decoder:
- outputs = self_attention_outputs[1:-1]
- present_key_value = self_attention_outputs[-1]
- else:
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- cross_attn_present_key_value = None
- if self.is_decoder and encoder_hidden_states is not None:
- if not hasattr(self, "crossattention"):
- raise ValueError(
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
- " by setting `config.add_cross_attention=True`"
- )
- # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- cross_attention_outputs = self.crossattention(
- attention_output,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- cross_attn_past_key_value,
- output_attentions,
- )
- attention_output = cross_attention_outputs[0]
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
- # add cross-attn cache to positions 3,4 of present_key_value tuple
- cross_attn_present_key_value = cross_attention_outputs[-1]
- present_key_value = present_key_value + cross_attn_present_key_value
- layer_output = apply_chunking_to_forward(
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
- )
- outputs = (layer_output,) + outputs
- # if decoder, return the attn key/values as the last output
- if self.is_decoder:
- outputs = outputs + (present_key_value,)
- return outputs
- def feed_forward_chunk(self, attention_output):
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
- # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->AlignText
- class AlignTextEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([AlignTextLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = False,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- next_decoder_cache = () if use_cache else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- past_key_value = past_key_values[i] if past_key_values is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[-1],)
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if self.config.add_cross_attention:
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- next_decoder_cache,
- all_hidden_states,
- all_self_attentions,
- all_cross_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_decoder_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- cross_attentions=all_cross_attentions,
- )
- # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert -> AlignText
- class AlignTextPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- class AlignPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = AlignConfig
- base_model_prefix = "align"
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv2d)):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, AlignModel):
- nn.init.xavier_uniform_(module.text_projection.weight)
- module.text_projection.bias.data.zero_()
- module.text_projection._is_hf_initialized = True
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- if isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- @add_start_docstrings(
- """The text model from ALIGN without any head or projection on top.""",
- ALIGN_START_DOCSTRING,
- )
- class AlignTextModel(AlignPreTrainedModel):
- config_class = AlignTextConfig
- _no_split_modules = ["AlignTextEmbeddings"]
- def __init__(self, config: AlignTextConfig, add_pooling_layer: bool = True):
- super().__init__(config)
- self.config = config
- self.embeddings = AlignTextEmbeddings(config)
- self.encoder = AlignTextEncoder(config)
- self.pooler = AlignTextPooler(config) if add_pooling_layer else None
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- @add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=AlignTextConfig)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, AlignTextModel
- >>> model = AlignTextModel.from_pretrained("kakaobrain/align-base")
- >>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")
- >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_state = outputs.last_hidden_state
- >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- batch_size, seq_length = input_shape
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(((batch_size, seq_length)), device=device)
- if token_type_ids is None:
- if hasattr(self.embeddings, "token_type_ids"):
- buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
- # ourselves in which case we just need to make it broadcastable to all heads.
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output = self.embeddings(
- input_ids=input_ids,
- position_ids=position_ids,
- token_type_ids=token_type_ids,
- inputs_embeds=inputs_embeds,
- )
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndCrossAttentions(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- cross_attentions=encoder_outputs.cross_attentions,
- )
- @add_start_docstrings(
- """The vision model from ALIGN without any head or projection on top.""",
- ALIGN_START_DOCSTRING,
- )
- class AlignVisionModel(AlignPreTrainedModel):
- config_class = AlignVisionConfig
- main_input_name = "pixel_values"
- supports_gradient_checkpointing = False
- def __init__(self, config: AlignVisionConfig):
- super().__init__(config)
- self.config = config
- self.embeddings = AlignVisionEmbeddings(config)
- self.encoder = AlignVisionEncoder(config)
- # Final pooling layer
- if config.pooling_type == "mean":
- self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
- elif config.pooling_type == "max":
- self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
- else:
- raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.vision_model.embeddings.convolution
- @add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=AlignVisionConfig)
- def forward(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, AlignVisionModel
- >>> model = AlignVisionModel.from_pretrained("kakaobrain/align-base")
- >>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_state = outputs.last_hidden_state
- >>> pooled_output = outputs.pooler_output # pooled CLS states
- ```"""
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- embedding_output = self.embeddings(pixel_values)
- encoder_outputs = self.encoder(
- embedding_output,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- # Apply pooling
- last_hidden_state = encoder_outputs[0]
- pooled_output = self.pooler(last_hidden_state)
- # Reshape (batch_size, projection_dim, 1 , 1) -> (batch_size, projection_dim)
- pooled_output = pooled_output.reshape(pooled_output.shape[:2])
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndNoAttention(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- )
- @add_start_docstrings(ALIGN_START_DOCSTRING)
- class AlignModel(AlignPreTrainedModel):
- config_class = AlignConfig
- def __init__(self, config: AlignConfig):
- super().__init__(config)
- if not isinstance(config.text_config, AlignTextConfig):
- raise TypeError(
- "config.text_config is expected to be of type AlignTextConfig but is of type"
- f" {type(config.text_config)}."
- )
- if not isinstance(config.vision_config, AlignVisionConfig):
- raise TypeError(
- "config.vision_config is expected to be of type AlignVisionConfig but is of type"
- f" {type(config.vision_config)}."
- )
- text_config = config.text_config
- vision_config = config.vision_config
- self.projection_dim = config.projection_dim
- self.text_embed_dim = text_config.hidden_size
- self.text_model = AlignTextModel(text_config)
- self.vision_model = AlignVisionModel(vision_config)
- self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim)
- self.temperature = nn.Parameter(torch.tensor(self.config.temperature_init_value))
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING)
- def get_text_features(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
- applying the projection layer to the pooled output of [`AlignTextModel`].
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, AlignModel
- >>> model = AlignModel.from_pretrained("kakaobrain/align-base")
- >>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")
- >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
- >>> text_features = model.get_text_features(**inputs)
- ```"""
- # Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- last_hidden_state = text_outputs[0][:, 0, :]
- text_features = self.text_projection(last_hidden_state)
- return text_features
- @add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
- def get_image_features(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
- applying the projection layer to the pooled output of [`AlignVisionModel`].
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, AlignModel
- >>> model = AlignModel.from_pretrained("kakaobrain/align-base")
- >>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, return_tensors="pt")
- >>> image_features = model.get_image_features(**inputs)
- ```"""
- # Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- image_features = vision_outputs[1] # pooled_output
- return image_features
- @add_start_docstrings_to_model_forward(ALIGN_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=AlignOutput, config_class=AlignConfig)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- pixel_values: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- return_loss: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, AlignOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, AlignModel
- >>> model = AlignModel.from_pretrained("kakaobrain/align-base")
- >>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(
- ... images=image, text=["a photo of a cat", "a photo of a dog"], return_tensors="pt", padding=True
- ... )
- >>> outputs = model(**inputs)
- >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
- >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
- ```"""
- # Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- image_embeds = vision_outputs[1]
- text_embeds = text_outputs[0][:, 0, :]
- text_embeds = self.text_projection(text_embeds)
- # normalized features
- image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
- text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
- # cosine similarity as logits
- logits_per_text = torch.matmul(text_embeds, image_embeds.t()) / self.temperature
- logits_per_image = logits_per_text.t()
- loss = None
- if return_loss:
- loss = align_loss(logits_per_text)
- if not return_dict:
- output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
- return ((loss,) + output) if loss is not None else output
- return AlignOutput(
- loss=loss,
- logits_per_image=logits_per_image,
- logits_per_text=logits_per_text,
- text_embeds=text_embeds,
- image_embeds=image_embeds,
- text_model_output=text_outputs,
- vision_model_output=vision_outputs,
- )
- __all__ = ["AlignPreTrainedModel", "AlignTextModel", "AlignVisionModel", "AlignModel"]
|