| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Image/Text processor class for ALIGN
- """
- from typing import List, Union
- from ...image_utils import ImageInput
- from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
- from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
- class AlignProcessorKwargs(ProcessingKwargs, total=False):
- # see processing_utils.ProcessingKwargs documentation for usage.
- _defaults = {
- "text_kwargs": {
- "padding": "max_length",
- "max_length": 64,
- },
- }
- class AlignProcessor(ProcessorMixin):
- r"""
- Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and
- [`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and
- tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
- information.
- The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
- ```python
- from transformers import AlignProcessor
- from PIL import Image
- model_id = "kakaobrain/align-base"
- processor = AlignProcessor.from_pretrained(model_id)
- processor(
- images=your_pil_image,
- text=["What is that?"],
- images_kwargs = {"crop_size": {"height": 224, "width": 224}},
- text_kwargs = {"padding": "do_not_pad"},
- common_kwargs = {"return_tensors": "pt"},
- )
- ```
- Args:
- image_processor ([`EfficientNetImageProcessor`]):
- The image processor is a required input.
- tokenizer ([`BertTokenizer`, `BertTokenizerFast`]):
- The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "EfficientNetImageProcessor"
- tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
- def __init__(self, image_processor, tokenizer):
- super().__init__(image_processor, tokenizer)
- def __call__(
- self,
- images: ImageInput = None,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[AlignProcessorKwargs],
- ) -> BatchEncoding:
- """
- Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
- arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
- the text. To prepare the image(s), this method forwards the `images` arguments to
- EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer
- to the doctsring of the above two methods for more information.
- Args:
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
- tensor. Both channels-first and channels-last formats are supported.
- text (`str`, `List[str]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors of a particular framework. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return NumPy `np.ndarray` objects.
- - `'jax'`: Return JAX `jnp.ndarray` objects.
- Returns:
- [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
- `None`).
- - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- """
- if text is None and images is None:
- raise ValueError("You must specify either text or images.")
- # check if images and text inputs are reversed for BC
- images, text = _validate_images_text_input_order(images, text)
- output_kwargs = self._merge_kwargs(
- AlignProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- # then, we can pass correct kwargs to each processor
- if text is not None:
- encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
- if images is not None:
- image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
- # BC for explicit return_tensors
- if "return_tensors" in output_kwargs["common_kwargs"]:
- return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None)
- if text is not None and images is not None:
- encoding["pixel_values"] = image_features.pixel_values
- return encoding
- elif text is not None:
- return encoding
- else:
- return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
- __all__ = ["AlignProcessor"]
|