| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """AutoImageProcessor class."""
- import importlib
- import json
- import os
- import warnings
- from collections import OrderedDict
- from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
- # Build the list of all image processors
- from ...configuration_utils import PretrainedConfig
- from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
- from ...image_processing_utils import BaseImageProcessor, ImageProcessingMixin
- from ...image_processing_utils_fast import BaseImageProcessorFast
- from ...utils import (
- CONFIG_NAME,
- IMAGE_PROCESSOR_NAME,
- get_file_from_repo,
- is_torchvision_available,
- is_vision_available,
- logging,
- )
- from .auto_factory import _LazyAutoMapping
- from .configuration_auto import (
- CONFIG_MAPPING_NAMES,
- AutoConfig,
- model_type_to_module_name,
- replace_list_option_in_docstrings,
- )
- logger = logging.get_logger(__name__)
- if TYPE_CHECKING:
- # This significantly improves completion suggestion performance when
- # the transformers package is used with Microsoft's Pylance language server.
- IMAGE_PROCESSOR_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
- else:
- IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
- [
- ("align", ("EfficientNetImageProcessor",)),
- ("beit", ("BeitImageProcessor",)),
- ("bit", ("BitImageProcessor",)),
- ("blip", ("BlipImageProcessor",)),
- ("blip-2", ("BlipImageProcessor",)),
- ("bridgetower", ("BridgeTowerImageProcessor",)),
- ("chameleon", ("ChameleonImageProcessor",)),
- ("chinese_clip", ("ChineseCLIPImageProcessor",)),
- ("clip", ("CLIPImageProcessor",)),
- ("clipseg", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("conditional_detr", ("ConditionalDetrImageProcessor",)),
- ("convnext", ("ConvNextImageProcessor",)),
- ("convnextv2", ("ConvNextImageProcessor",)),
- ("cvt", ("ConvNextImageProcessor",)),
- ("data2vec-vision", ("BeitImageProcessor",)),
- ("deformable_detr", ("DeformableDetrImageProcessor",)),
- ("deit", ("DeiTImageProcessor",)),
- ("depth_anything", ("DPTImageProcessor",)),
- ("deta", ("DetaImageProcessor",)),
- ("detr", ("DetrImageProcessor", "DetrImageProcessorFast")),
- ("dinat", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("dinov2", ("BitImageProcessor",)),
- ("donut-swin", ("DonutImageProcessor",)),
- ("dpt", ("DPTImageProcessor",)),
- ("efficientformer", ("EfficientFormerImageProcessor",)),
- ("efficientnet", ("EfficientNetImageProcessor",)),
- ("flava", ("FlavaImageProcessor",)),
- ("focalnet", ("BitImageProcessor",)),
- ("fuyu", ("FuyuImageProcessor",)),
- ("git", ("CLIPImageProcessor",)),
- ("glpn", ("GLPNImageProcessor",)),
- ("grounding-dino", ("GroundingDinoImageProcessor",)),
- ("groupvit", ("CLIPImageProcessor",)),
- ("hiera", ("BitImageProcessor",)),
- ("idefics", ("IdeficsImageProcessor",)),
- ("idefics2", ("Idefics2ImageProcessor",)),
- ("idefics3", ("Idefics3ImageProcessor",)),
- ("imagegpt", ("ImageGPTImageProcessor",)),
- ("instructblip", ("BlipImageProcessor",)),
- ("instructblipvideo", ("InstructBlipVideoImageProcessor",)),
- ("kosmos-2", ("CLIPImageProcessor",)),
- ("layoutlmv2", ("LayoutLMv2ImageProcessor",)),
- ("layoutlmv3", ("LayoutLMv3ImageProcessor",)),
- ("levit", ("LevitImageProcessor",)),
- ("llava", ("CLIPImageProcessor",)),
- ("llava_next", ("LlavaNextImageProcessor",)),
- ("llava_next_video", ("LlavaNextVideoImageProcessor",)),
- ("llava_onevision", ("LlavaOnevisionImageProcessor",)),
- ("mask2former", ("Mask2FormerImageProcessor",)),
- ("maskformer", ("MaskFormerImageProcessor",)),
- ("mgp-str", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("mllama", ("MllamaImageProcessor",)),
- ("mobilenet_v1", ("MobileNetV1ImageProcessor",)),
- ("mobilenet_v2", ("MobileNetV2ImageProcessor",)),
- ("mobilevit", ("MobileViTImageProcessor",)),
- ("mobilevitv2", ("MobileViTImageProcessor",)),
- ("nat", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("nougat", ("NougatImageProcessor",)),
- ("oneformer", ("OneFormerImageProcessor",)),
- ("owlv2", ("Owlv2ImageProcessor",)),
- ("owlvit", ("OwlViTImageProcessor",)),
- ("perceiver", ("PerceiverImageProcessor",)),
- ("pix2struct", ("Pix2StructImageProcessor",)),
- ("pixtral", ("PixtralImageProcessor",)),
- ("poolformer", ("PoolFormerImageProcessor",)),
- ("pvt", ("PvtImageProcessor",)),
- ("pvt_v2", ("PvtImageProcessor",)),
- ("qwen2_vl", ("Qwen2VLImageProcessor",)),
- ("regnet", ("ConvNextImageProcessor",)),
- ("resnet", ("ConvNextImageProcessor",)),
- ("rt_detr", "RTDetrImageProcessor"),
- ("sam", ("SamImageProcessor",)),
- ("segformer", ("SegformerImageProcessor",)),
- ("seggpt", ("SegGptImageProcessor",)),
- ("siglip", ("SiglipImageProcessor",)),
- ("swiftformer", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("swin", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("swin2sr", ("Swin2SRImageProcessor",)),
- ("swinv2", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("table-transformer", ("DetrImageProcessor",)),
- ("timesformer", ("VideoMAEImageProcessor",)),
- ("tvlt", ("TvltImageProcessor",)),
- ("tvp", ("TvpImageProcessor",)),
- ("udop", ("LayoutLMv3ImageProcessor",)),
- ("upernet", ("SegformerImageProcessor",)),
- ("van", ("ConvNextImageProcessor",)),
- ("videomae", ("VideoMAEImageProcessor",)),
- ("vilt", ("ViltImageProcessor",)),
- ("vipllava", ("CLIPImageProcessor",)),
- ("vit", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("vit_hybrid", ("ViTHybridImageProcessor",)),
- ("vit_mae", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("vit_msn", ("ViTImageProcessor", "ViTImageProcessorFast")),
- ("vitmatte", ("VitMatteImageProcessor",)),
- ("xclip", ("CLIPImageProcessor",)),
- ("yolos", ("YolosImageProcessor",)),
- ("zoedepth", ("ZoeDepthImageProcessor",)),
- ]
- )
- for model_type, image_processors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
- slow_image_processor_class, *fast_image_processor_class = image_processors
- if not is_vision_available():
- slow_image_processor_class = None
- # If the fast image processor is not defined, or torchvision is not available, we set it to None
- if not fast_image_processor_class or fast_image_processor_class[0] is None or not is_torchvision_available():
- fast_image_processor_class = None
- else:
- fast_image_processor_class = fast_image_processor_class[0]
- IMAGE_PROCESSOR_MAPPING_NAMES[model_type] = (slow_image_processor_class, fast_image_processor_class)
- IMAGE_PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
- def image_processor_class_from_name(class_name: str):
- if class_name == "BaseImageProcessorFast":
- return BaseImageProcessorFast
- for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
- if class_name in extractors:
- module_name = model_type_to_module_name(module_name)
- module = importlib.import_module(f".{module_name}", "transformers.models")
- try:
- return getattr(module, class_name)
- except AttributeError:
- continue
- for _, extractors in IMAGE_PROCESSOR_MAPPING._extra_content.items():
- for extractor in extractors:
- if getattr(extractor, "__name__", None) == class_name:
- return extractor
- # We did not find the class, but maybe it's because a dep is missing. In that case, the class will be in the main
- # init and we return the proper dummy to get an appropriate error message.
- main_module = importlib.import_module("transformers")
- if hasattr(main_module, class_name):
- return getattr(main_module, class_name)
- return None
- def get_image_processor_config(
- pretrained_model_name_or_path: Union[str, os.PathLike],
- cache_dir: Optional[Union[str, os.PathLike]] = None,
- force_download: bool = False,
- resume_download: Optional[bool] = None,
- proxies: Optional[Dict[str, str]] = None,
- token: Optional[Union[bool, str]] = None,
- revision: Optional[str] = None,
- local_files_only: bool = False,
- **kwargs,
- ):
- """
- Loads the image processor configuration from a pretrained model image processor configuration.
- Args:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- This can be either:
- - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
- huggingface.co.
- - a path to a *directory* containing a configuration file saved using the
- [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
- cache_dir (`str` or `os.PathLike`, *optional*):
- Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
- cache should not be used.
- force_download (`bool`, *optional*, defaults to `False`):
- Whether or not to force to (re-)download the configuration files and override the cached versions if they
- exist.
- resume_download:
- Deprecated and ignored. All downloads are now resumed by default when possible.
- Will be removed in v5 of Transformers.
- proxies (`Dict[str, str]`, *optional*):
- A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
- 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
- token (`str` or *bool*, *optional*):
- The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
- when running `huggingface-cli login` (stored in `~/.huggingface`).
- revision (`str`, *optional*, defaults to `"main"`):
- The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
- git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
- identifier allowed by git.
- local_files_only (`bool`, *optional*, defaults to `False`):
- If `True`, will only try to load the image processor configuration from local files.
- <Tip>
- Passing `token=True` is required when you want to use a private model.
- </Tip>
- Returns:
- `Dict`: The configuration of the image processor.
- Examples:
- ```python
- # Download configuration from huggingface.co and cache.
- image_processor_config = get_image_processor_config("google-bert/bert-base-uncased")
- # This model does not have a image processor config so the result will be an empty dict.
- image_processor_config = get_image_processor_config("FacebookAI/xlm-roberta-base")
- # Save a pretrained image processor locally and you can reload its config
- from transformers import AutoTokenizer
- image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
- image_processor.save_pretrained("image-processor-test")
- image_processor_config = get_image_processor_config("image-processor-test")
- ```"""
- use_auth_token = kwargs.pop("use_auth_token", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if token is not None:
- raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
- token = use_auth_token
- resolved_config_file = get_file_from_repo(
- pretrained_model_name_or_path,
- IMAGE_PROCESSOR_NAME,
- cache_dir=cache_dir,
- force_download=force_download,
- resume_download=resume_download,
- proxies=proxies,
- token=token,
- revision=revision,
- local_files_only=local_files_only,
- )
- if resolved_config_file is None:
- logger.info(
- "Could not locate the image processor configuration file, will try to use the model config instead."
- )
- return {}
- with open(resolved_config_file, encoding="utf-8") as reader:
- return json.load(reader)
- def _warning_fast_image_processor_available(fast_class):
- logger.warning(
- f"Fast image processor class {fast_class} is available for this model. "
- "Using slow image processor class. To use the fast image processor class set `use_fast=True`."
- )
- class AutoImageProcessor:
- r"""
- This is a generic image processor class that will be instantiated as one of the image processor classes of the
- library when created with the [`AutoImageProcessor.from_pretrained`] class method.
- This class cannot be instantiated directly using `__init__()` (throws an error).
- """
- def __init__(self):
- raise EnvironmentError(
- "AutoImageProcessor is designed to be instantiated "
- "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method."
- )
- @classmethod
- @replace_list_option_in_docstrings(IMAGE_PROCESSOR_MAPPING_NAMES)
- def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
- r"""
- Instantiate one of the image processor classes of the library from a pretrained model vocabulary.
- The image processor class to instantiate is selected based on the `model_type` property of the config object
- (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
- missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
- List options
- Params:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- This can be either:
- - a string, the *model id* of a pretrained image_processor hosted inside a model repo on
- huggingface.co.
- - a path to a *directory* containing a image processor file saved using the
- [`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
- `./my_model_directory/`.
- - a path or url to a saved image processor JSON *file*, e.g.,
- `./my_model_directory/preprocessor_config.json`.
- cache_dir (`str` or `os.PathLike`, *optional*):
- Path to a directory in which a downloaded pretrained model image processor should be cached if the
- standard cache should not be used.
- force_download (`bool`, *optional*, defaults to `False`):
- Whether or not to force to (re-)download the image processor files and override the cached versions if
- they exist.
- resume_download:
- Deprecated and ignored. All downloads are now resumed by default when possible.
- Will be removed in v5 of Transformers.
- proxies (`Dict[str, str]`, *optional*):
- A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
- 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
- token (`str` or *bool*, *optional*):
- The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
- when running `huggingface-cli login` (stored in `~/.huggingface`).
- revision (`str`, *optional*, defaults to `"main"`):
- The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
- git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
- identifier allowed by git.
- use_fast (`bool`, *optional*, defaults to `False`):
- Use a fast torchvision-base image processor if it is supported for a given model.
- If a fast tokenizer is not available for a given model, a normal numpy-based image processor
- is returned instead.
- return_unused_kwargs (`bool`, *optional*, defaults to `False`):
- If `False`, then this function returns just the final image processor object. If `True`, then this
- functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
- consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
- `kwargs` which has not been used to update `image_processor` and is otherwise ignored.
- trust_remote_code (`bool`, *optional*, defaults to `False`):
- Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
- should only be set to `True` for repositories you trust and in which you have read the code, as it will
- execute code present on the Hub on your local machine.
- kwargs (`Dict[str, Any]`, *optional*):
- The values in kwargs of any keys which are image processor attributes will be used to override the
- loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
- controlled by the `return_unused_kwargs` keyword parameter.
- <Tip>
- Passing `token=True` is required when you want to use a private model.
- </Tip>
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor
- >>> # Download image processor from huggingface.co and cache.
- >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
- >>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*)
- >>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/")
- ```"""
- use_auth_token = kwargs.pop("use_auth_token", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if kwargs.get("token", None) is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- kwargs["token"] = use_auth_token
- config = kwargs.pop("config", None)
- use_fast = kwargs.pop("use_fast", None)
- trust_remote_code = kwargs.pop("trust_remote_code", None)
- kwargs["_from_auto"] = True
- config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
- image_processor_class = config_dict.get("image_processor_type", None)
- image_processor_auto_map = None
- if "AutoImageProcessor" in config_dict.get("auto_map", {}):
- image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"]
- # If we still don't have the image processor class, check if we're loading from a previous feature extractor config
- # and if so, infer the image processor class from there.
- if image_processor_class is None and image_processor_auto_map is None:
- feature_extractor_class = config_dict.pop("feature_extractor_type", None)
- if feature_extractor_class is not None:
- image_processor_class = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor")
- if "AutoFeatureExtractor" in config_dict.get("auto_map", {}):
- feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"]
- image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor")
- # If we don't find the image processor class in the image processor config, let's try the model config.
- if image_processor_class is None and image_processor_auto_map is None:
- if not isinstance(config, PretrainedConfig):
- config = AutoConfig.from_pretrained(
- pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
- )
- # It could be in `config.image_processor_type``
- image_processor_class = getattr(config, "image_processor_type", None)
- if hasattr(config, "auto_map") and "AutoImageProcessor" in config.auto_map:
- image_processor_auto_map = config.auto_map["AutoImageProcessor"]
- if image_processor_class is not None:
- # Update class name to reflect the use_fast option. If class is not found, None is returned.
- if use_fast is not None:
- if use_fast and not image_processor_class.endswith("Fast"):
- image_processor_class += "Fast"
- elif not use_fast and image_processor_class.endswith("Fast"):
- image_processor_class = image_processor_class[:-4]
- image_processor_class = image_processor_class_from_name(image_processor_class)
- has_remote_code = image_processor_auto_map is not None
- has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING
- trust_remote_code = resolve_trust_remote_code(
- trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
- )
- if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple):
- # In some configs, only the slow image processor class is stored
- image_processor_auto_map = (image_processor_auto_map, None)
- if has_remote_code and trust_remote_code:
- if not use_fast and image_processor_auto_map[1] is not None:
- _warning_fast_image_processor_available(image_processor_auto_map[1])
- if use_fast and image_processor_auto_map[1] is not None:
- class_ref = image_processor_auto_map[1]
- else:
- class_ref = image_processor_auto_map[0]
- image_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
- _ = kwargs.pop("code_revision", None)
- if os.path.isdir(pretrained_model_name_or_path):
- image_processor_class.register_for_auto_class()
- return image_processor_class.from_dict(config_dict, **kwargs)
- elif image_processor_class is not None:
- return image_processor_class.from_dict(config_dict, **kwargs)
- # Last try: we use the IMAGE_PROCESSOR_MAPPING.
- elif type(config) in IMAGE_PROCESSOR_MAPPING:
- image_processor_tuple = IMAGE_PROCESSOR_MAPPING[type(config)]
- image_processor_class_py, image_processor_class_fast = image_processor_tuple
- if not use_fast and image_processor_class_fast is not None:
- _warning_fast_image_processor_available(image_processor_class_fast)
- if image_processor_class_fast and (use_fast or image_processor_class_py is None):
- return image_processor_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
- else:
- if image_processor_class_py is not None:
- return image_processor_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
- else:
- raise ValueError(
- "This image processor cannot be instantiated. Please make sure you have `Pillow` installed."
- )
- raise ValueError(
- f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a "
- f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following "
- f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}"
- )
- @staticmethod
- def register(
- config_class,
- image_processor_class=None,
- slow_image_processor_class=None,
- fast_image_processor_class=None,
- exist_ok=False,
- ):
- """
- Register a new image processor for this class.
- Args:
- config_class ([`PretrainedConfig`]):
- The configuration corresponding to the model to register.
- image_processor_class ([`ImageProcessingMixin`]): The image processor to register.
- """
- if image_processor_class is not None:
- if slow_image_processor_class is not None:
- raise ValueError("Cannot specify both image_processor_class and slow_image_processor_class")
- warnings.warn(
- "The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead",
- FutureWarning,
- )
- slow_image_processor_class = image_processor_class
- if slow_image_processor_class is None and fast_image_processor_class is None:
- raise ValueError("You need to specify either slow_image_processor_class or fast_image_processor_class")
- if slow_image_processor_class is not None and issubclass(slow_image_processor_class, BaseImageProcessorFast):
- raise ValueError("You passed a fast image processor in as the `slow_image_processor_class`.")
- if fast_image_processor_class is not None and issubclass(fast_image_processor_class, BaseImageProcessor):
- raise ValueError("You passed a slow image processor in as the `fast_image_processor_class`.")
- if (
- slow_image_processor_class is not None
- and fast_image_processor_class is not None
- and issubclass(fast_image_processor_class, BaseImageProcessorFast)
- and fast_image_processor_class.slow_image_processor_class != slow_image_processor_class
- ):
- raise ValueError(
- "The fast processor class you are passing has a `slow_image_processor_class` attribute that is not "
- "consistent with the slow processor class you passed (fast tokenizer has "
- f"{fast_image_processor_class.slow_image_processor_class} and you passed {slow_image_processor_class}. Fix one of those "
- "so they match!"
- )
- # Avoid resetting a set slow/fast image processor if we are passing just the other ones.
- if config_class in IMAGE_PROCESSOR_MAPPING._extra_content:
- existing_slow, existing_fast = IMAGE_PROCESSOR_MAPPING[config_class]
- if slow_image_processor_class is None:
- slow_image_processor_class = existing_slow
- if fast_image_processor_class is None:
- fast_image_processor_class = existing_fast
- IMAGE_PROCESSOR_MAPPING.register(
- config_class, (slow_image_processor_class, fast_image_processor_class), exist_ok=exist_ok
- )
|