| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 |
- # coding=utf-8
- # Copyright 2021 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """AutoProcessor class."""
- import importlib
- import inspect
- import json
- import os
- import warnings
- from collections import OrderedDict
- # Build the list of all feature extractors
- from ...configuration_utils import PretrainedConfig
- from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
- from ...feature_extraction_utils import FeatureExtractionMixin
- from ...image_processing_utils import ImageProcessingMixin
- from ...processing_utils import ProcessorMixin
- from ...tokenization_utils import TOKENIZER_CONFIG_FILE
- from ...utils import FEATURE_EXTRACTOR_NAME, PROCESSOR_NAME, get_file_from_repo, logging
- from .auto_factory import _LazyAutoMapping
- from .configuration_auto import (
- CONFIG_MAPPING_NAMES,
- AutoConfig,
- model_type_to_module_name,
- replace_list_option_in_docstrings,
- )
- from .feature_extraction_auto import AutoFeatureExtractor
- from .image_processing_auto import AutoImageProcessor
- from .tokenization_auto import AutoTokenizer
- logger = logging.get_logger(__name__)
- PROCESSOR_MAPPING_NAMES = OrderedDict(
- [
- ("align", "AlignProcessor"),
- ("altclip", "AltCLIPProcessor"),
- ("bark", "BarkProcessor"),
- ("blip", "BlipProcessor"),
- ("blip-2", "Blip2Processor"),
- ("bridgetower", "BridgeTowerProcessor"),
- ("chameleon", "ChameleonProcessor"),
- ("chinese_clip", "ChineseCLIPProcessor"),
- ("clap", "ClapProcessor"),
- ("clip", "CLIPProcessor"),
- ("clipseg", "CLIPSegProcessor"),
- ("clvp", "ClvpProcessor"),
- ("flava", "FlavaProcessor"),
- ("fuyu", "FuyuProcessor"),
- ("git", "GitProcessor"),
- ("grounding-dino", "GroundingDinoProcessor"),
- ("groupvit", "CLIPProcessor"),
- ("hubert", "Wav2Vec2Processor"),
- ("idefics", "IdeficsProcessor"),
- ("idefics2", "Idefics2Processor"),
- ("idefics3", "Idefics3Processor"),
- ("instructblip", "InstructBlipProcessor"),
- ("instructblipvideo", "InstructBlipVideoProcessor"),
- ("kosmos-2", "Kosmos2Processor"),
- ("layoutlmv2", "LayoutLMv2Processor"),
- ("layoutlmv3", "LayoutLMv3Processor"),
- ("llava", "LlavaProcessor"),
- ("llava_next", "LlavaNextProcessor"),
- ("llava_next_video", "LlavaNextVideoProcessor"),
- ("llava_onevision", "LlavaOnevisionProcessor"),
- ("markuplm", "MarkupLMProcessor"),
- ("mctct", "MCTCTProcessor"),
- ("mgp-str", "MgpstrProcessor"),
- ("mllama", "MllamaProcessor"),
- ("oneformer", "OneFormerProcessor"),
- ("owlv2", "Owlv2Processor"),
- ("owlvit", "OwlViTProcessor"),
- ("paligemma", "PaliGemmaProcessor"),
- ("pix2struct", "Pix2StructProcessor"),
- ("pixtral", "PixtralProcessor"),
- ("pop2piano", "Pop2PianoProcessor"),
- ("qwen2_audio", "Qwen2AudioProcessor"),
- ("qwen2_vl", "Qwen2VLProcessor"),
- ("sam", "SamProcessor"),
- ("seamless_m4t", "SeamlessM4TProcessor"),
- ("sew", "Wav2Vec2Processor"),
- ("sew-d", "Wav2Vec2Processor"),
- ("siglip", "SiglipProcessor"),
- ("speech_to_text", "Speech2TextProcessor"),
- ("speech_to_text_2", "Speech2Text2Processor"),
- ("speecht5", "SpeechT5Processor"),
- ("trocr", "TrOCRProcessor"),
- ("tvlt", "TvltProcessor"),
- ("tvp", "TvpProcessor"),
- ("udop", "UdopProcessor"),
- ("unispeech", "Wav2Vec2Processor"),
- ("unispeech-sat", "Wav2Vec2Processor"),
- ("video_llava", "VideoLlavaProcessor"),
- ("vilt", "ViltProcessor"),
- ("vipllava", "LlavaProcessor"),
- ("vision-text-dual-encoder", "VisionTextDualEncoderProcessor"),
- ("wav2vec2", "Wav2Vec2Processor"),
- ("wav2vec2-bert", "Wav2Vec2Processor"),
- ("wav2vec2-conformer", "Wav2Vec2Processor"),
- ("wavlm", "Wav2Vec2Processor"),
- ("whisper", "WhisperProcessor"),
- ("xclip", "XCLIPProcessor"),
- ]
- )
- PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, PROCESSOR_MAPPING_NAMES)
- def processor_class_from_name(class_name: str):
- for module_name, processors in PROCESSOR_MAPPING_NAMES.items():
- if class_name in processors:
- module_name = model_type_to_module_name(module_name)
- module = importlib.import_module(f".{module_name}", "transformers.models")
- try:
- return getattr(module, class_name)
- except AttributeError:
- continue
- for processor in PROCESSOR_MAPPING._extra_content.values():
- if getattr(processor, "__name__", None) == class_name:
- return processor
- # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
- # init and we return the proper dummy to get an appropriate error message.
- main_module = importlib.import_module("transformers")
- if hasattr(main_module, class_name):
- return getattr(main_module, class_name)
- return None
- class AutoProcessor:
- r"""
- This is a generic processor class that will be instantiated as one of the processor classes of the library when
- created with the [`AutoProcessor.from_pretrained`] class method.
- This class cannot be instantiated directly using `__init__()` (throws an error).
- """
- def __init__(self):
- raise EnvironmentError(
- "AutoProcessor is designed to be instantiated "
- "using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method."
- )
- @classmethod
- @replace_list_option_in_docstrings(PROCESSOR_MAPPING_NAMES)
- def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
- r"""
- Instantiate one of the processor classes of the library from a pretrained model vocabulary.
- The processor class to instantiate is selected based on the `model_type` property of the config object (either
- passed as an argument or loaded from `pretrained_model_name_or_path` if possible):
- List options
- Params:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- This can be either:
- - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
- huggingface.co.
- - a path to a *directory* containing a processor files saved using the `save_pretrained()` method,
- e.g., `./my_model_directory/`.
- cache_dir (`str` or `os.PathLike`, *optional*):
- Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
- standard cache should not be used.
- force_download (`bool`, *optional*, defaults to `False`):
- Whether or not to force to (re-)download the feature extractor files and override the cached versions
- if they exist.
- resume_download:
- Deprecated and ignored. All downloads are now resumed by default when possible.
- Will be removed in v5 of Transformers.
- proxies (`Dict[str, str]`, *optional*):
- A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
- 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
- token (`str` or *bool*, *optional*):
- The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
- when running `huggingface-cli login` (stored in `~/.huggingface`).
- revision (`str`, *optional*, defaults to `"main"`):
- The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
- git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
- identifier allowed by git.
- return_unused_kwargs (`bool`, *optional*, defaults to `False`):
- If `False`, then this function returns just the final feature extractor object. If `True`, then this
- functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
- consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
- `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
- trust_remote_code (`bool`, *optional*, defaults to `False`):
- Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
- should only be set to `True` for repositories you trust and in which you have read the code, as it will
- execute code present on the Hub on your local machine.
- kwargs (`Dict[str, Any]`, *optional*):
- The values in kwargs of any keys which are feature extractor attributes will be used to override the
- loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
- controlled by the `return_unused_kwargs` keyword parameter.
- <Tip>
- Passing `token=True` is required when you want to use a private model.
- </Tip>
- Examples:
- ```python
- >>> from transformers import AutoProcessor
- >>> # Download processor from huggingface.co and cache.
- >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
- >>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*)
- >>> # processor = AutoProcessor.from_pretrained("./test/saved_model/")
- ```"""
- use_auth_token = kwargs.pop("use_auth_token", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if kwargs.get("token", None) is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- kwargs["token"] = use_auth_token
- config = kwargs.pop("config", None)
- trust_remote_code = kwargs.pop("trust_remote_code", None)
- kwargs["_from_auto"] = True
- processor_class = None
- processor_auto_map = None
- # First, let's see if we have a processor or preprocessor config.
- # Filter the kwargs for `get_file_from_repo`.
- get_file_from_repo_kwargs = {
- key: kwargs[key] for key in inspect.signature(get_file_from_repo).parameters.keys() if key in kwargs
- }
- # Let's start by checking whether the processor class is saved in a processor config
- processor_config_file = get_file_from_repo(
- pretrained_model_name_or_path, PROCESSOR_NAME, **get_file_from_repo_kwargs
- )
- if processor_config_file is not None:
- config_dict, _ = ProcessorMixin.get_processor_dict(pretrained_model_name_or_path, **kwargs)
- processor_class = config_dict.get("processor_class", None)
- if "AutoProcessor" in config_dict.get("auto_map", {}):
- processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
- if processor_class is None:
- # If not found, let's check whether the processor class is saved in an image processor config
- preprocessor_config_file = get_file_from_repo(
- pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **get_file_from_repo_kwargs
- )
- if preprocessor_config_file is not None:
- config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
- processor_class = config_dict.get("processor_class", None)
- if "AutoProcessor" in config_dict.get("auto_map", {}):
- processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
- # If not found, let's check whether the processor class is saved in a feature extractor config
- if preprocessor_config_file is not None and processor_class is None:
- config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(
- pretrained_model_name_or_path, **kwargs
- )
- processor_class = config_dict.get("processor_class", None)
- if "AutoProcessor" in config_dict.get("auto_map", {}):
- processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
- if processor_class is None:
- # Next, let's check whether the processor class is saved in a tokenizer
- tokenizer_config_file = get_file_from_repo(
- pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **get_file_from_repo_kwargs
- )
- if tokenizer_config_file is not None:
- with open(tokenizer_config_file, encoding="utf-8") as reader:
- config_dict = json.load(reader)
- processor_class = config_dict.get("processor_class", None)
- if "AutoProcessor" in config_dict.get("auto_map", {}):
- processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
- if processor_class is None:
- # Otherwise, load config, if it can be loaded.
- if not isinstance(config, PretrainedConfig):
- config = AutoConfig.from_pretrained(
- pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
- )
- # And check if the config contains the processor class.
- processor_class = getattr(config, "processor_class", None)
- if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map:
- processor_auto_map = config.auto_map["AutoProcessor"]
- if processor_class is not None:
- processor_class = processor_class_from_name(processor_class)
- has_remote_code = processor_auto_map is not None
- has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING
- trust_remote_code = resolve_trust_remote_code(
- trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
- )
- if has_remote_code and trust_remote_code:
- processor_class = get_class_from_dynamic_module(
- processor_auto_map, pretrained_model_name_or_path, **kwargs
- )
- _ = kwargs.pop("code_revision", None)
- if os.path.isdir(pretrained_model_name_or_path):
- processor_class.register_for_auto_class()
- return processor_class.from_pretrained(
- pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
- )
- elif processor_class is not None:
- return processor_class.from_pretrained(
- pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
- )
- # Last try: we use the PROCESSOR_MAPPING.
- elif type(config) in PROCESSOR_MAPPING:
- return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs)
- # At this stage, there doesn't seem to be a `Processor` class available for this model, so let's try a
- # tokenizer.
- try:
- return AutoTokenizer.from_pretrained(
- pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
- )
- except Exception:
- try:
- return AutoImageProcessor.from_pretrained(
- pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
- )
- except Exception:
- pass
- try:
- return AutoFeatureExtractor.from_pretrained(
- pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
- )
- except Exception:
- pass
- raise ValueError(
- f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a "
- "tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains "
- "the files of at least one of those processing classes."
- )
- @staticmethod
- def register(config_class, processor_class, exist_ok=False):
- """
- Register a new processor for this class.
- Args:
- config_class ([`PretrainedConfig`]):
- The configuration corresponding to the model to register.
- processor_class ([`FeatureExtractorMixin`]): The processor to register.
- """
- PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok)
|