| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- # coding=utf-8
- # Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for Bark
- """
- import json
- import os
- from typing import Optional
- import numpy as np
- from ...feature_extraction_utils import BatchFeature
- from ...processing_utils import ProcessorMixin
- from ...utils import logging
- from ...utils.hub import get_file_from_repo
- from ..auto import AutoTokenizer
- logger = logging.get_logger(__name__)
- class BarkProcessor(ProcessorMixin):
- r"""
- Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor.
- Args:
- tokenizer ([`PreTrainedTokenizer`]):
- An instance of [`PreTrainedTokenizer`].
- speaker_embeddings (`Dict[Dict[str]]`, *optional*):
- Optional nested speaker embeddings dictionary. The first level contains voice preset names (e.g
- `"en_speaker_4"`). The second level contains `"semantic_prompt"`, `"coarse_prompt"` and `"fine_prompt"`
- embeddings. The values correspond to the path of the corresponding `np.ndarray`. See
- [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) for
- a list of `voice_preset_names`.
- """
- tokenizer_class = "AutoTokenizer"
- attributes = ["tokenizer"]
- preset_shape = {
- "semantic_prompt": 1,
- "coarse_prompt": 2,
- "fine_prompt": 2,
- }
- def __init__(self, tokenizer, speaker_embeddings=None):
- super().__init__(tokenizer)
- self.speaker_embeddings = speaker_embeddings
- @classmethod
- def from_pretrained(
- cls, pretrained_processor_name_or_path, speaker_embeddings_dict_path="speaker_embeddings_path.json", **kwargs
- ):
- r"""
- Instantiate a Bark processor associated with a pretrained model.
- Args:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- This can be either:
- - a string, the *model id* of a pretrained [`BarkProcessor`] hosted inside a model repo on
- huggingface.co.
- - a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`]
- method, e.g., `./my_model_directory/`.
- speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
- The name of the `.json` file containing the speaker_embeddings dictionnary located in
- `pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded.
- **kwargs
- Additional keyword arguments passed along to both
- [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
- """
- if speaker_embeddings_dict_path is not None:
- speaker_embeddings_path = get_file_from_repo(
- pretrained_processor_name_or_path,
- speaker_embeddings_dict_path,
- subfolder=kwargs.pop("subfolder", None),
- cache_dir=kwargs.pop("cache_dir", None),
- force_download=kwargs.pop("force_download", False),
- proxies=kwargs.pop("proxies", None),
- resume_download=kwargs.pop("resume_download", None),
- local_files_only=kwargs.pop("local_files_only", False),
- token=kwargs.pop("use_auth_token", None),
- revision=kwargs.pop("revision", None),
- )
- if speaker_embeddings_path is None:
- logger.warning(
- f"""`{os.path.join(pretrained_processor_name_or_path,speaker_embeddings_dict_path)}` does not exists
- , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
- dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`."""
- )
- speaker_embeddings = None
- else:
- with open(speaker_embeddings_path) as speaker_embeddings_json:
- speaker_embeddings = json.load(speaker_embeddings_json)
- else:
- speaker_embeddings = None
- tokenizer = AutoTokenizer.from_pretrained(pretrained_processor_name_or_path, **kwargs)
- return cls(tokenizer=tokenizer, speaker_embeddings=speaker_embeddings)
- def save_pretrained(
- self,
- save_directory,
- speaker_embeddings_dict_path="speaker_embeddings_path.json",
- speaker_embeddings_directory="speaker_embeddings",
- push_to_hub: bool = False,
- **kwargs,
- ):
- """
- Saves the attributes of this processor (tokenizer...) in the specified directory so that it can be reloaded
- using the [`~BarkProcessor.from_pretrained`] method.
- Args:
- save_directory (`str` or `os.PathLike`):
- Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created
- if it does not exist).
- speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
- The name of the `.json` file that will contains the speaker_embeddings nested path dictionnary, if it
- exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`.
- speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`):
- The name of the folder in which the speaker_embeddings arrays will be saved.
- push_to_hub (`bool`, *optional*, defaults to `False`):
- Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
- repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
- namespace).
- kwargs:
- Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
- """
- if self.speaker_embeddings is not None:
- os.makedirs(os.path.join(save_directory, speaker_embeddings_directory, "v2"), exist_ok=True)
- embeddings_dict = {}
- embeddings_dict["repo_or_path"] = save_directory
- for prompt_key in self.speaker_embeddings:
- if prompt_key != "repo_or_path":
- voice_preset = self._load_voice_preset(prompt_key)
- tmp_dict = {}
- for key in self.speaker_embeddings[prompt_key]:
- np.save(
- os.path.join(
- embeddings_dict["repo_or_path"], speaker_embeddings_directory, f"{prompt_key}_{key}"
- ),
- voice_preset[key],
- allow_pickle=False,
- )
- tmp_dict[key] = os.path.join(speaker_embeddings_directory, f"{prompt_key}_{key}.npy")
- embeddings_dict[prompt_key] = tmp_dict
- with open(os.path.join(save_directory, speaker_embeddings_dict_path), "w") as fp:
- json.dump(embeddings_dict, fp)
- super().save_pretrained(save_directory, push_to_hub, **kwargs)
- def _load_voice_preset(self, voice_preset: str = None, **kwargs):
- voice_preset_paths = self.speaker_embeddings[voice_preset]
- voice_preset_dict = {}
- for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
- if key not in voice_preset_paths:
- raise ValueError(
- f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]."
- )
- path = get_file_from_repo(
- self.speaker_embeddings.get("repo_or_path", "/"),
- voice_preset_paths[key],
- subfolder=kwargs.pop("subfolder", None),
- cache_dir=kwargs.pop("cache_dir", None),
- force_download=kwargs.pop("force_download", False),
- proxies=kwargs.pop("proxies", None),
- resume_download=kwargs.pop("resume_download", None),
- local_files_only=kwargs.pop("local_files_only", False),
- token=kwargs.pop("use_auth_token", None),
- revision=kwargs.pop("revision", None),
- )
- if path is None:
- raise ValueError(
- f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"),voice_preset_paths[key])}` does not exists
- , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
- embeddings."""
- )
- voice_preset_dict[key] = np.load(path)
- return voice_preset_dict
- def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None):
- for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
- if key not in voice_preset:
- raise ValueError(f"Voice preset unrecognized, missing {key} as a key.")
- if not isinstance(voice_preset[key], np.ndarray):
- raise TypeError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
- if len(voice_preset[key].shape) != self.preset_shape[key]:
- raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
- def __call__(
- self,
- text=None,
- voice_preset=None,
- return_tensors="pt",
- max_length=256,
- add_special_tokens=False,
- return_attention_mask=True,
- return_token_type_ids=False,
- **kwargs,
- ):
- """
- Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs`
- arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a
- voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded
- to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- voice_preset (`str`, `Dict[np.ndarray]`):
- The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g
- `"en_speaker_1"`, or directly a dictionnary of `np.ndarray` embeddings for each submodel of `Bark`. Or
- it can be a valid file name of a local `.npz` single voice preset.
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors of a particular framework. Acceptable values are:
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return NumPy `np.ndarray` objects.
- Returns:
- Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the
- `tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type.
- """
- if voice_preset is not None and not isinstance(voice_preset, dict):
- if (
- isinstance(voice_preset, str)
- and self.speaker_embeddings is not None
- and voice_preset in self.speaker_embeddings
- ):
- voice_preset = self._load_voice_preset(voice_preset)
- else:
- if isinstance(voice_preset, str) and not voice_preset.endswith(".npz"):
- voice_preset = voice_preset + ".npz"
- voice_preset = np.load(voice_preset)
- if voice_preset is not None:
- self._validate_voice_preset_dict(voice_preset, **kwargs)
- voice_preset = BatchFeature(data=voice_preset, tensor_type=return_tensors)
- encoded_text = self.tokenizer(
- text,
- return_tensors=return_tensors,
- padding="max_length",
- max_length=max_length,
- return_attention_mask=return_attention_mask,
- return_token_type_ids=return_token_type_ids,
- add_special_tokens=add_special_tokens,
- **kwargs,
- )
- if voice_preset is not None:
- encoded_text["history_prompt"] = voice_preset
- return encoded_text
|