| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- # coding=utf-8
- # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """BART model configuration"""
- import warnings
- from collections import OrderedDict
- from typing import Any, Mapping, Optional
- from ... import PreTrainedTokenizer
- from ...configuration_utils import PretrainedConfig
- from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
- from ...onnx.utils import compute_effective_axis_dimension
- from ...utils import TensorType, is_torch_available, logging
- logger = logging.get_logger(__name__)
- class BartConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`BartModel`]. It is used to instantiate a BART
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the BART
- [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 50265):
- Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`].
- d_model (`int`, *optional*, defaults to 1024):
- Dimensionality of the layers and the pooler layer.
- encoder_layers (`int`, *optional*, defaults to 12):
- Number of encoder layers.
- decoder_layers (`int`, *optional*, defaults to 12):
- Number of decoder layers.
- encoder_attention_heads (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer encoder.
- decoder_attention_heads (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer decoder.
- decoder_ffn_dim (`int`, *optional*, defaults to 4096):
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
- encoder_ffn_dim (`int`, *optional*, defaults to 4096):
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
- activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
- dropout (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- activation_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for activations inside the fully connected layer.
- classifier_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for classifier.
- max_position_embeddings (`int`, *optional*, defaults to 1024):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- init_std (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- encoder_layerdrop (`float`, *optional*, defaults to 0.0):
- The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
- for more details.
- decoder_layerdrop (`float`, *optional*, defaults to 0.0):
- The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
- for more details.
- scale_embedding (`bool`, *optional*, defaults to `False`):
- Scale embeddings by diving by sqrt(d_model).
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models).
- num_labels (`int`, *optional*, defaults to 3):
- The number of labels to use in [`BartForSequenceClassification`].
- forced_eos_token_id (`int`, *optional*, defaults to 2):
- The id of the token to force as the last generated token when `max_length` is reached. Usually set to
- `eos_token_id`.
- Example:
- ```python
- >>> from transformers import BartConfig, BartModel
- >>> # Initializing a BART facebook/bart-large style configuration
- >>> configuration = BartConfig()
- >>> # Initializing a model (with random weights) from the facebook/bart-large style configuration
- >>> model = BartModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "bart"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
- def __init__(
- self,
- vocab_size=50265,
- max_position_embeddings=1024,
- encoder_layers=12,
- encoder_ffn_dim=4096,
- encoder_attention_heads=16,
- decoder_layers=12,
- decoder_ffn_dim=4096,
- decoder_attention_heads=16,
- encoder_layerdrop=0.0,
- decoder_layerdrop=0.0,
- activation_function="gelu",
- d_model=1024,
- dropout=0.1,
- attention_dropout=0.0,
- activation_dropout=0.0,
- init_std=0.02,
- classifier_dropout=0.0,
- scale_embedding=False,
- use_cache=True,
- num_labels=3,
- pad_token_id=1,
- bos_token_id=0,
- eos_token_id=2,
- is_encoder_decoder=True,
- decoder_start_token_id=2,
- forced_eos_token_id=2,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.d_model = d_model
- self.encoder_ffn_dim = encoder_ffn_dim
- self.encoder_layers = encoder_layers
- self.encoder_attention_heads = encoder_attention_heads
- self.decoder_ffn_dim = decoder_ffn_dim
- self.decoder_layers = decoder_layers
- self.decoder_attention_heads = decoder_attention_heads
- self.dropout = dropout
- self.attention_dropout = attention_dropout
- self.activation_dropout = activation_dropout
- self.activation_function = activation_function
- self.init_std = init_std
- self.encoder_layerdrop = encoder_layerdrop
- self.decoder_layerdrop = decoder_layerdrop
- self.classifier_dropout = classifier_dropout
- self.use_cache = use_cache
- self.num_hidden_layers = encoder_layers
- self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
- super().__init__(
- num_labels=num_labels,
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- is_encoder_decoder=is_encoder_decoder,
- decoder_start_token_id=decoder_start_token_id,
- forced_eos_token_id=forced_eos_token_id,
- **kwargs,
- )
- # ensure backward compatibility for BART CNN models
- if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
- self.forced_bos_token_id = self.bos_token_id
- warnings.warn(
- f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
- "The config can simply be saved and uploaded again to be fixed."
- )
- class BartOnnxConfig(OnnxSeq2SeqConfigWithPast):
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- if self.task in ["default", "seq2seq-lm"]:
- common_inputs = OrderedDict(
- [
- ("input_ids", {0: "batch", 1: "encoder_sequence"}),
- ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
- ]
- )
- if self.use_past:
- common_inputs["decoder_input_ids"] = {0: "batch"}
- common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
- else:
- common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
- common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
- if self.use_past:
- self.fill_with_past_key_values_(common_inputs, direction="inputs")
- elif self.task == "causal-lm":
- # TODO: figure this case out.
- common_inputs = OrderedDict(
- [
- ("input_ids", {0: "batch", 1: "encoder_sequence"}),
- ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
- ]
- )
- if self.use_past:
- num_encoder_layers, _ = self.num_layers
- for i in range(num_encoder_layers):
- common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
- common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
- else:
- common_inputs = OrderedDict(
- [
- ("input_ids", {0: "batch", 1: "encoder_sequence"}),
- ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
- ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
- ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
- ]
- )
- return common_inputs
- @property
- def outputs(self) -> Mapping[str, Mapping[int, str]]:
- if self.task in ["default", "seq2seq-lm"]:
- common_outputs = super().outputs
- else:
- common_outputs = super(OnnxConfigWithPast, self).outputs
- if self.use_past:
- num_encoder_layers, _ = self.num_layers
- for i in range(num_encoder_layers):
- common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
- common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
- return common_outputs
- def _generate_dummy_inputs_for_default_and_seq2seq_lm(
- self,
- tokenizer: PreTrainedTokenizer,
- batch_size: int = -1,
- seq_length: int = -1,
- is_pair: bool = False,
- framework: Optional[TensorType] = None,
- ) -> Mapping[str, Any]:
- encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
- tokenizer, batch_size, seq_length, is_pair, framework
- )
- # Generate decoder inputs
- decoder_seq_length = seq_length if not self.use_past else 1
- decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
- tokenizer, batch_size, decoder_seq_length, is_pair, framework
- )
- decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
- common_inputs = dict(**encoder_inputs, **decoder_inputs)
- if self.use_past:
- if not is_torch_available():
- raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
- else:
- import torch
- batch, encoder_seq_length = common_inputs["input_ids"].shape
- decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
- num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
- encoder_shape = (
- batch,
- num_encoder_attention_heads,
- encoder_seq_length,
- self._config.hidden_size // num_encoder_attention_heads,
- )
- decoder_past_length = decoder_seq_length + 3
- decoder_shape = (
- batch,
- num_decoder_attention_heads,
- decoder_past_length,
- self._config.hidden_size // num_decoder_attention_heads,
- )
- common_inputs["decoder_attention_mask"] = torch.cat(
- [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
- )
- common_inputs["past_key_values"] = []
- # If the number of encoder and decoder layers are present in the model configuration, both are considered
- num_encoder_layers, num_decoder_layers = self.num_layers
- min_num_layers = min(num_encoder_layers, num_decoder_layers)
- max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
- remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
- for _ in range(min_num_layers):
- common_inputs["past_key_values"].append(
- (
- torch.zeros(decoder_shape),
- torch.zeros(decoder_shape),
- torch.zeros(encoder_shape),
- torch.zeros(encoder_shape),
- )
- )
- # TODO: test this.
- shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
- for _ in range(min_num_layers, max_num_layers):
- common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
- return common_inputs
- def _generate_dummy_inputs_for_causal_lm(
- self,
- tokenizer: PreTrainedTokenizer,
- batch_size: int = -1,
- seq_length: int = -1,
- is_pair: bool = False,
- framework: Optional[TensorType] = None,
- ) -> Mapping[str, Any]:
- common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
- tokenizer, batch_size, seq_length, is_pair, framework
- )
- if self.use_past:
- if not is_torch_available():
- raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
- else:
- import torch
- batch, seqlen = common_inputs["input_ids"].shape
- # Not using the same length for past_key_values
- past_key_values_length = seqlen + 2
- num_encoder_layers, _ = self.num_layers
- num_encoder_attention_heads, _ = self.num_attention_heads
- past_shape = (
- batch,
- num_encoder_attention_heads,
- past_key_values_length,
- self._config.hidden_size // num_encoder_attention_heads,
- )
- mask_dtype = common_inputs["attention_mask"].dtype
- common_inputs["attention_mask"] = torch.cat(
- [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
- )
- common_inputs["past_key_values"] = [
- (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
- ]
- return common_inputs
- def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
- self,
- tokenizer: PreTrainedTokenizer,
- batch_size: int = -1,
- seq_length: int = -1,
- is_pair: bool = False,
- framework: Optional[TensorType] = None,
- ) -> Mapping[str, Any]:
- # Copied from OnnxConfig.generate_dummy_inputs
- # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
- # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
- batch_size = compute_effective_axis_dimension(
- batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
- )
- # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
- token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
- seq_length = compute_effective_axis_dimension(
- seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
- )
- # Generate dummy inputs according to compute batch and sequence
- dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
- common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
- return common_inputs
- def generate_dummy_inputs(
- self,
- tokenizer: PreTrainedTokenizer,
- batch_size: int = -1,
- seq_length: int = -1,
- is_pair: bool = False,
- framework: Optional[TensorType] = None,
- ) -> Mapping[str, Any]:
- if self.task in ["default", "seq2seq-lm"]:
- common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
- tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
- )
- elif self.task == "causal-lm":
- common_inputs = self._generate_dummy_inputs_for_causal_lm(
- tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
- )
- else:
- common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
- tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
- )
- return common_inputs
- def _flatten_past_key_values_(self, flattened_output, name, idx, t):
- if self.task in ["default", "seq2seq-lm"]:
- flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
- else:
- flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
- flattened_output, name, idx, t
- )
|