| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160 |
- # coding=utf-8
- # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch BART model."""
- import copy
- import math
- import warnings
- from typing import List, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_attn_mask_utils import (
- _prepare_4d_attention_mask,
- _prepare_4d_attention_mask_for_sdpa,
- _prepare_4d_causal_attention_mask,
- _prepare_4d_causal_attention_mask_for_sdpa,
- )
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPastAndCrossAttentions,
- CausalLMOutputWithCrossAttentions,
- Seq2SeqLMOutput,
- Seq2SeqModelOutput,
- Seq2SeqQuestionAnsweringModelOutput,
- Seq2SeqSequenceClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_code_sample_docstrings,
- add_end_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- is_flash_attn_2_available,
- is_flash_attn_greater_or_equal_2_10,
- logging,
- replace_return_docstrings,
- )
- from .configuration_bart import BartConfig
- if is_flash_attn_2_available():
- from ...modeling_flash_attention_utils import _flash_attention_forward
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "facebook/bart-base"
- _CONFIG_FOR_DOC = "BartConfig"
- # Base model docstring
- _EXPECTED_OUTPUT_SHAPE = [1, 8, 768]
- # SequenceClassification docstring
- _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "valhalla/bart-large-sst2"
- _SEQ_CLASS_EXPECTED_LOSS = 0.0
- _SEQ_CLASS_EXPECTED_OUTPUT = "'POSITIVE'"
- # QuestionAsnwering docstring
- _CHECKPOINT_FOR_QA = "valhalla/bart-large-finetuned-squadv1"
- _QA_EXPECTED_LOSS = 0.59
- _QA_EXPECTED_OUTPUT = "' nice puppet'"
- def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
- """
- Shift input ids one token to the right.
- """
- shifted_input_ids = input_ids.new_zeros(input_ids.shape)
- shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
- shifted_input_ids[:, 0] = decoder_start_token_id
- if pad_token_id is None:
- raise ValueError("self.model.config.pad_token_id has to be defined.")
- # replace possible -100 values in labels by `pad_token_id`
- shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
- return shifted_input_ids
- class BartLearnedPositionalEmbedding(nn.Embedding):
- """
- This module learns positional embeddings up to a fixed maximum size.
- """
- def __init__(self, num_embeddings: int, embedding_dim: int):
- # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
- # and adjust num_embeddings appropriately. Other models don't have this hack
- self.offset = 2
- super().__init__(num_embeddings + self.offset, embedding_dim)
- def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
- """`input_ids' shape is expected to be [bsz x seqlen]."""
- bsz, seq_len = input_ids.shape[:2]
- positions = torch.arange(
- past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
- ).expand(bsz, -1)
- return super().forward(positions + self.offset)
- class BartScaledWordEmbedding(nn.Embedding):
- """
- This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
- """
- def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
- super().__init__(num_embeddings, embedding_dim, padding_idx)
- self.embed_scale = embed_scale
- def forward(self, input_ids: torch.Tensor):
- return super().forward(input_ids) * self.embed_scale
- class BartAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(
- self,
- embed_dim: int,
- num_heads: int,
- dropout: float = 0.0,
- is_decoder: bool = False,
- bias: bool = True,
- is_causal: bool = False,
- config: Optional[BartConfig] = None,
- ):
- super().__init__()
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.dropout = dropout
- self.head_dim = embed_dim // num_heads
- self.config = config
- if (self.head_dim * num_heads) != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
- f" and `num_heads`: {num_heads})."
- )
- self.scaling = self.head_dim**-0.5
- self.is_decoder = is_decoder
- self.is_causal = is_causal
- self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- """Input shape: Batch x Time x Channel"""
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
- bsz, tgt_len, _ = hidden_states.size()
- # get query proj
- query_states = self.q_proj(hidden_states) * self.scaling
- # get key, value proj
- # `past_key_value[0].shape[2] == key_value_states.shape[1]`
- # is checking that the `sequence_length` of the `past_key_value` is the same as
- # the provided `key_value_states` to support prefix tuning
- if (
- is_cross_attention
- and past_key_value is not None
- and past_key_value[0].shape[2] == key_value_states.shape[1]
- ):
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
- proj_shape = (bsz * self.num_heads, -1, self.head_dim)
- query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
- key_states = key_states.reshape(*proj_shape)
- value_states = value_states.reshape(*proj_shape)
- src_len = key_states.size(1)
- attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
- if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
- raise ValueError(
- f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
- f" {attn_weights.size()}"
- )
- if attention_mask is not None:
- if attention_mask.size() != (bsz, 1, tgt_len, src_len):
- raise ValueError(
- f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
- )
- attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
- if layer_head_mask is not None:
- if layer_head_mask.size() != (self.num_heads,):
- raise ValueError(
- f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
- f" {layer_head_mask.size()}"
- )
- attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- if output_attentions:
- # this operation is a bit awkward, but it's required to
- # make sure that attn_weights keeps its gradient.
- # In order to do so, attn_weights have to be reshaped
- # twice and have to be reused in the following
- attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
- attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
- else:
- attn_weights_reshaped = None
- attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
- attn_output = torch.bmm(attn_probs, value_states)
- if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
- attn_output = attn_output.transpose(1, 2)
- # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
- # partitioned across GPUs when using tensor-parallelism.
- attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
- attn_output = self.out_proj(attn_output)
- return attn_output, attn_weights_reshaped, past_key_value
- class BartFlashAttention2(BartAttention):
- """
- Bart flash attention module. This module inherits from `BartAttention` as the weights of the module stays
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
- flash attention and deal with padding tokens in case the input contains any of them.
- """
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
- def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- # BartFlashAttention2 attention does not support output_attentions
- if output_attentions:
- raise ValueError("BartFlashAttention2 attention does not support output_attentions")
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
- bsz, q_len, _ = hidden_states.size()
- # get query proj
- query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
- # get key, value proj
- # `past_key_value[0].shape[2] == key_value_states.shape[1]`
- # is checking that the `sequence_length` of the `past_key_value` is the same as
- # the provided `key_value_states` to support prefix tuning
- if (
- is_cross_attention
- and past_key_value is not None
- and past_key_value[0].shape[2] == key_value_states.shape[1]
- ):
- # reuse k,v, cross_attentions
- key_states = past_key_value[0].transpose(1, 2)
- value_states = past_key_value[1].transpose(1, 2)
- elif is_cross_attention:
- # cross_attentions
- key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
- value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
- else:
- # self_attention
- key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
- kv_seq_len = key_states.shape[-2]
- if past_key_value is not None:
- kv_seq_len += past_key_value[0].shape[-2]
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
- # therefore the input hidden states gets silently casted in float32. Hence, we need
- # cast them back in the correct dtype just to be sure everything works as expected.
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
- # in fp32. (LlamaRMSNorm handles it correctly)
- input_dtype = query_states.dtype
- if input_dtype == torch.float32:
- if torch.is_autocast_enabled():
- target_dtype = torch.get_autocast_gpu_dtype()
- # Handle the case where the model is quantized
- elif hasattr(self.config, "_pre_quantization_dtype"):
- target_dtype = self.config._pre_quantization_dtype
- else:
- target_dtype = self.q_proj.weight.dtype
- logger.warning_once(
- f"The input hidden states seems to be silently casted in float32, this might be related to"
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
- f" {target_dtype}."
- )
- query_states = query_states.to(target_dtype)
- key_states = key_states.to(target_dtype)
- value_states = value_states.to(target_dtype)
- attn_output = _flash_attention_forward(
- query_states,
- key_states,
- value_states,
- attention_mask,
- q_len,
- dropout=self.dropout if self.training else 0.0,
- is_causal=self.is_causal,
- use_top_left_mask=self._flash_attn_uses_top_left_mask,
- )
- attn_output = attn_output.reshape(bsz, q_len, -1)
- attn_output = self.out_proj(attn_output)
- if not output_attentions:
- attn_weights = None
- return attn_output, attn_weights, past_key_value
- class BartSdpaAttention(BartAttention):
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- """Input shape: Batch x Time x Channel"""
- if output_attentions or layer_head_mask is not None:
- # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
- logger.warning_once(
- "BartModel is using BartSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
- ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
- )
- return super().forward(
- hidden_states,
- key_value_states=key_value_states,
- past_key_value=past_key_value,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
- bsz, tgt_len, _ = hidden_states.size()
- # get query proj
- query_states = self.q_proj(hidden_states)
- # get key, value proj
- # `past_key_value[0].shape[2] == key_value_states.shape[1]`
- # is checking that the `sequence_length` of the `past_key_value` is the same as
- # the provided `key_value_states` to support prefix tuning
- if (
- is_cross_attention
- and past_key_value is not None
- and past_key_value[0].shape[2] == key_value_states.shape[1]
- ):
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
- query_states = self._shape(query_states, tgt_len, bsz)
- # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
- # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
- # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
- is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
- # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
- # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
- attn_output = torch.nn.functional.scaled_dot_product_attention(
- query_states,
- key_states,
- value_states,
- attn_mask=attention_mask,
- dropout_p=self.dropout if self.training else 0.0,
- is_causal=is_causal,
- )
- if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.transpose(1, 2)
- # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
- # partitioned across GPUs when using tensor-parallelism.
- attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
- attn_output = self.out_proj(attn_output)
- return attn_output, None, past_key_value
- BART_ATTENTION_CLASSES = {
- "eager": BartAttention,
- "sdpa": BartSdpaAttention,
- "flash_attention_2": BartFlashAttention2,
- }
- class BartEncoderLayer(nn.Module):
- def __init__(self, config: BartConfig):
- super().__init__()
- self.embed_dim = config.d_model
- self.self_attn = BART_ATTENTION_CLASSES[config._attn_implementation](
- embed_dim=self.embed_dim,
- num_heads=config.encoder_attention_heads,
- dropout=config.attention_dropout,
- config=config,
- )
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.dropout = config.dropout
- self.activation_fn = ACT2FN[config.activation_function]
- self.activation_dropout = config.activation_dropout
- self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
- self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- attention_mask: torch.FloatTensor,
- layer_head_mask: torch.FloatTensor,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
- `(encoder_attention_heads,)`.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- """
- residual = hidden_states
- hidden_states, attn_weights, _ = self.self_attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
- residual = hidden_states
- hidden_states = self.activation_fn(self.fc1(hidden_states))
- hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
- hidden_states = self.fc2(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
- if hidden_states.dtype == torch.float16 and (
- torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
- ):
- clamp_value = torch.finfo(hidden_states.dtype).max - 1000
- hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (attn_weights,)
- return outputs
- class BartDecoderLayer(nn.Module):
- def __init__(self, config: BartConfig):
- super().__init__()
- self.embed_dim = config.d_model
- self.self_attn = BART_ATTENTION_CLASSES[config._attn_implementation](
- embed_dim=self.embed_dim,
- num_heads=config.decoder_attention_heads,
- dropout=config.attention_dropout,
- is_decoder=True,
- is_causal=True,
- config=config,
- )
- self.dropout = config.dropout
- self.activation_fn = ACT2FN[config.activation_function]
- self.activation_dropout = config.activation_dropout
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.encoder_attn = BART_ATTENTION_CLASSES[config._attn_implementation](
- self.embed_dim,
- config.decoder_attention_heads,
- dropout=config.attention_dropout,
- is_decoder=True,
- config=config,
- )
- self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
- self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- output_attentions: Optional[bool] = False,
- use_cache: Optional[bool] = True,
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- encoder_hidden_states (`torch.FloatTensor`):
- cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
- encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
- `(encoder_attention_heads,)`.
- cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
- size `(decoder_attention_heads,)`.
- past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- """
- residual = hidden_states
- # Self Attention
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- # add present self-attn cache to positions 1,2 of present_key_value tuple
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- past_key_value=self_attn_past_key_value,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
- # Cross-Attention Block
- cross_attn_present_key_value = None
- cross_attn_weights = None
- if encoder_hidden_states is not None:
- residual = hidden_states
- # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
- hidden_states=hidden_states,
- key_value_states=encoder_hidden_states,
- attention_mask=encoder_attention_mask,
- layer_head_mask=cross_attn_layer_head_mask,
- past_key_value=cross_attn_past_key_value,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.encoder_attn_layer_norm(hidden_states)
- # add cross-attn to positions 3,4 of present_key_value tuple
- present_key_value = present_key_value + cross_attn_present_key_value
- # Fully Connected
- residual = hidden_states
- hidden_states = self.activation_fn(self.fc1(hidden_states))
- hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
- hidden_states = self.fc2(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights, cross_attn_weights)
- if use_cache:
- outputs += (present_key_value,)
- return outputs
- class BartClassificationHead(nn.Module):
- """Head for sentence-level classification tasks."""
- def __init__(
- self,
- input_dim: int,
- inner_dim: int,
- num_classes: int,
- pooler_dropout: float,
- ):
- super().__init__()
- self.dense = nn.Linear(input_dim, inner_dim)
- self.dropout = nn.Dropout(p=pooler_dropout)
- self.out_proj = nn.Linear(inner_dim, num_classes)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.dense(hidden_states)
- hidden_states = torch.tanh(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.out_proj(hidden_states)
- return hidden_states
- class BartPreTrainedModel(PreTrainedModel):
- config_class = BartConfig
- base_model_prefix = "model"
- supports_gradient_checkpointing = True
- _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"]
- _no_split_modules = [r"BartEncoderLayer", r"BartDecoderLayer"]
- _skip_keys_device_placement = "past_key_values"
- _supports_flash_attn_2 = True
- _supports_sdpa = True
- def _init_weights(self, module):
- std = self.config.init_std
- if isinstance(module, nn.Linear):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- @property
- def dummy_inputs(self):
- pad_token = self.config.pad_token_id
- input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
- dummy_inputs = {
- "attention_mask": input_ids.ne(pad_token),
- "input_ids": input_ids,
- }
- return dummy_inputs
- class PretrainedBartModel(BartPreTrainedModel):
- def __init_subclass__(self):
- warnings.warn(
- "The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.",
- FutureWarning,
- )
- class BartPretrainedModel(BartPreTrainedModel):
- def __init_subclass__(self):
- warnings.warn(
- "The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.",
- FutureWarning,
- )
- BART_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`BartConfig`]):
- Model configuration class with all the parameters of the model. Initializing with a config file does not
- load the weights associated with the model, only the configuration. Check out the
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- BART_GENERATION_EXAMPLE = r"""
- Summarization example:
- ```python
- >>> from transformers import AutoTokenizer, BartForConditionalGeneration
- >>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
- >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
- >>> ARTICLE_TO_SUMMARIZE = (
- ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
- ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
- ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
- ... )
- >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
- >>> # Generate Summary
- >>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20)
- >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- 'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions'
- ```
- Mask filling example:
- ```python
- >>> from transformers import AutoTokenizer, BartForConditionalGeneration
- >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
- >>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
- >>> TXT = "My friends are <mask> but they eat too many carbs."
- >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
- >>> logits = model(input_ids).logits
- >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
- >>> probs = logits[0, masked_index].softmax(dim=0)
- >>> values, predictions = probs.topk(5)
- >>> tokenizer.decode(predictions).split()
- ['not', 'good', 'healthy', 'great', 'very']
- ```
- """
- BART_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- Indices of decoder input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are decoder input IDs?](../glossary#decoder-input-ids)
- Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
- is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
- For translation and summarization training, `decoder_input_ids` should be provided. If no
- `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
- for denoising pre-training following the paper.
- decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
- be used by default.
- If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`]
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
- information on the default strategy.
- head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
- 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
- Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
- `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
- hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
- representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
- input (see `past_key_values`). This is useful if you want more control over how to convert
- `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
- If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
- of `inputs_embeds`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- class BartEncoder(BartPreTrainedModel):
- """
- Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
- [`BartEncoderLayer`].
- Args:
- config: BartConfig
- embed_tokens (nn.Embedding): output embedding
- """
- def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
- super().__init__(config)
- self.dropout = config.dropout
- self.layerdrop = config.encoder_layerdrop
- embed_dim = config.d_model
- self.padding_idx = config.pad_token_id
- self.max_source_positions = config.max_position_embeddings
- embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
- self.embed_tokens = BartScaledWordEmbedding(
- config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
- )
- if embed_tokens is not None:
- self.embed_tokens.weight = embed_tokens.weight
- self.embed_positions = BartLearnedPositionalEmbedding(
- config.max_position_embeddings,
- embed_dim,
- )
- self.layers = nn.ModuleList([BartEncoderLayer(config) for _ in range(config.encoder_layers)])
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- self._use_sdpa = config._attn_implementation == "sdpa"
- self.layernorm_embedding = nn.LayerNorm(embed_dim)
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embed_tokens
- def set_input_embeddings(self, value):
- self.embed_tokens = value
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutput]:
- r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # retrieve input_ids and inputs_embeds
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- input = input_ids
- input_ids = input_ids.view(-1, input_ids.shape[-1])
- elif inputs_embeds is not None:
- input = inputs_embeds[:, :, -1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input_ids)
- embed_pos = self.embed_positions(input)
- embed_pos = embed_pos.to(inputs_embeds.device)
- hidden_states = inputs_embeds + embed_pos
- hidden_states = self.layernorm_embedding(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- # expand attention_mask
- if attention_mask is not None:
- if self._use_flash_attention_2:
- attention_mask = attention_mask if 0 in attention_mask else None
- elif self._use_sdpa and head_mask is None and not output_attentions:
- # output_attentions=True & head_mask can not be supported when using SDPA, fall back to
- # the manual implementation that requires a 4D causal mask in all cases.
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
- else:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
- encoder_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- # check if head_mask has a correct number of layers specified if desired
- if head_mask is not None:
- if head_mask.size()[0] != (len(self.layers)):
- raise ValueError(
- f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
- f" {head_mask.size()[0]}."
- )
- for idx, encoder_layer in enumerate(self.layers):
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
- to_drop = False
- if self.training:
- dropout_probability = torch.rand([])
- if dropout_probability < self.layerdrop: # skip the layer
- to_drop = True
- if to_drop:
- layer_outputs = (None, None)
- else:
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- encoder_layer.__call__,
- hidden_states,
- attention_mask,
- (head_mask[idx] if head_mask is not None else None),
- output_attentions,
- )
- else:
- layer_outputs = encoder_layer(
- hidden_states,
- attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- output_attentions=output_attentions,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
- )
- class BartDecoder(BartPreTrainedModel):
- """
- Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BartDecoderLayer`]
- Args:
- config: BartConfig
- embed_tokens (nn.Embedding): output embedding
- """
- def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
- super().__init__(config)
- self.dropout = config.dropout
- self.layerdrop = config.decoder_layerdrop
- self.padding_idx = config.pad_token_id
- self.max_target_positions = config.max_position_embeddings
- embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
- self.embed_tokens = BartScaledWordEmbedding(
- config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
- )
- if embed_tokens is not None:
- self.embed_tokens.weight = embed_tokens.weight
- self.embed_positions = BartLearnedPositionalEmbedding(
- config.max_position_embeddings,
- config.d_model,
- )
- self.layers = nn.ModuleList([BartDecoderLayer(config) for _ in range(config.decoder_layers)])
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- self._use_sdpa = config._attn_implementation == "sdpa"
- self.layernorm_embedding = nn.LayerNorm(config.d_model)
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embed_tokens
- def set_input_embeddings(self, value):
- self.embed_tokens = value
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
- r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
- of the decoder.
- encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
- Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
- selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
- cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
- shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
- cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
- that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
- all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # retrieve input_ids and inputs_embeds
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
- elif input_ids is not None:
- input = input_ids
- input_shape = input.shape
- input_ids = input_ids.view(-1, input_shape[-1])
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- input = inputs_embeds[:, :, -1]
- else:
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
- # past_key_values_length
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input)
- if self._use_flash_attention_2:
- # 2d mask is passed through the layers
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
- elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
- # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
- # the manual implementation that requires a 4D causal mask in all cases.
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
- attention_mask,
- input_shape,
- inputs_embeds,
- past_key_values_length,
- )
- else:
- # 4d mask is passed through the layers
- attention_mask = _prepare_4d_causal_attention_mask(
- attention_mask, input_shape, inputs_embeds, past_key_values_length
- )
- # expand encoder attention mask
- if encoder_hidden_states is not None and encoder_attention_mask is not None:
- if self._use_flash_attention_2:
- encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
- elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
- # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
- # the manual implementation that requires a 4D causal mask in all cases.
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
- encoder_attention_mask,
- inputs_embeds.dtype,
- tgt_len=input_shape[-1],
- )
- else:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- encoder_attention_mask = _prepare_4d_attention_mask(
- encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
- )
- # embed positions
- positions = self.embed_positions(input, past_key_values_length)
- positions = positions.to(inputs_embeds.device)
- hidden_states = inputs_embeds + positions
- hidden_states = self.layernorm_embedding(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- # decoder layers
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
- next_decoder_cache = () if use_cache else None
- # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
- for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
- if attn_mask is not None:
- if attn_mask.size()[0] != (len(self.layers)):
- raise ValueError(
- f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
- f" {head_mask.size()[0]}."
- )
- for idx, decoder_layer in enumerate(self.layers):
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.training:
- dropout_probability = torch.rand([])
- if dropout_probability < self.layerdrop:
- continue
- past_key_value = past_key_values[idx] if past_key_values is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- attention_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- head_mask[idx] if head_mask is not None else None,
- cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
- None,
- output_attentions,
- use_cache,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- cross_attn_layer_head_mask=(
- cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
- ),
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
- if output_attentions:
- all_self_attns += (layer_outputs[1],)
- if encoder_hidden_states is not None:
- all_cross_attentions += (layer_outputs[2],)
- # add hidden states from the last decoder layer
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- next_cache = next_decoder_cache if use_cache else None
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- cross_attentions=all_cross_attentions,
- )
- @add_start_docstrings(
- "The bare BART Model outputting raw hidden-states without any specific head on top.",
- BART_START_DOCSTRING,
- )
- class BartModel(BartPreTrainedModel):
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
- def __init__(self, config: BartConfig):
- super().__init__(config)
- padding_idx, vocab_size = config.pad_token_id, config.vocab_size
- embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
- self.shared = BartScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
- self.encoder = BartEncoder(config, self.shared)
- self.decoder = BartDecoder(config, self.shared)
- # Initialize weights and apply final processing
- self.post_init()
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
- self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
- def get_input_embeddings(self):
- return self.shared
- def set_input_embeddings(self, value):
- self.shared = value
- self.encoder.embed_tokens = self.shared
- self.decoder.embed_tokens = self.shared
- def get_encoder(self):
- return self.encoder
- def get_decoder(self):
- return self.decoder
- @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=Seq2SeqModelOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Seq2SeqModelOutput]:
- # different to other models, Bart automatically creates decoder_input_ids from
- # input_ids if no decoder_input_ids are provided
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- if input_ids is None:
- raise ValueError(
- "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
- "passed, `input_ids` cannot be `None`. Please pass either "
- "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
- )
- decoder_input_ids = shift_tokens_right(
- input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
- )
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if encoder_outputs is None:
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
- elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
- encoder_outputs = BaseModelOutput(
- last_hidden_state=encoder_outputs[0],
- hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
- attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
- )
- # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
- decoder_outputs = self.decoder(
- input_ids=decoder_input_ids,
- attention_mask=decoder_attention_mask,
- encoder_hidden_states=encoder_outputs[0],
- encoder_attention_mask=attention_mask,
- head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- if not return_dict:
- return decoder_outputs + encoder_outputs
- return Seq2SeqModelOutput(
- last_hidden_state=decoder_outputs.last_hidden_state,
- past_key_values=decoder_outputs.past_key_values,
- decoder_hidden_states=decoder_outputs.hidden_states,
- decoder_attentions=decoder_outputs.attentions,
- cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING
- )
- class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
- base_model_prefix = "model"
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
- _keys_to_ignore_on_load_missing = ["final_logits_bias"]
- def __init__(self, config: BartConfig):
- super().__init__(config)
- self.model = BartModel(config)
- self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
- self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_encoder(self):
- return self.model.get_encoder()
- def get_decoder(self):
- return self.model.get_decoder()
- def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
- new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
- self._resize_final_logits_bias(new_embeddings.weight.shape[0])
- return new_embeddings
- def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
- old_num_tokens = self.final_logits_bias.shape[-1]
- if new_num_tokens <= old_num_tokens:
- new_bias = self.final_logits_bias[:, :new_num_tokens]
- else:
- extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
- new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
- self.register_buffer("final_logits_bias", new_bias)
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
- @add_end_docstrings(BART_GENERATION_EXAMPLE)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Seq2SeqLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
- Returns:
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if labels is not None:
- if use_cache:
- logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
- use_cache = False
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- decoder_input_ids = shift_tokens_right(
- labels, self.config.pad_token_id, self.config.decoder_start_token_id
- )
- outputs = self.model(
- input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- encoder_outputs=encoder_outputs,
- decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- lm_logits = self.lm_head(outputs[0])
- lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)
- masked_lm_loss = None
- if labels is not None:
- labels = labels.to(lm_logits.device)
- loss_fct = CrossEntropyLoss()
- masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (lm_logits,) + outputs[1:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return Seq2SeqLMOutput(
- loss=masked_lm_loss,
- logits=lm_logits,
- past_key_values=outputs.past_key_values,
- decoder_hidden_states=outputs.decoder_hidden_states,
- decoder_attentions=outputs.decoder_attentions,
- cross_attentions=outputs.cross_attentions,
- encoder_last_hidden_state=outputs.encoder_last_hidden_state,
- encoder_hidden_states=outputs.encoder_hidden_states,
- encoder_attentions=outputs.encoder_attentions,
- )
- def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
- return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
- @staticmethod
- def _reorder_cache(past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- # cached cross_attention states don't have to be reordered -> they are always the same
- reordered_past += (
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
- + layer_past[2:],
- )
- return reordered_past
- @add_start_docstrings(
- """
- Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
- tasks.
- """,
- BART_START_DOCSTRING,
- )
- class BartForSequenceClassification(BartPreTrainedModel):
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
- def __init__(self, config: BartConfig, **kwargs):
- super().__init__(config, **kwargs)
- self.model = BartModel(config)
- self.classification_head = BartClassificationHead(
- config.d_model,
- config.d_model,
- config.num_labels,
- config.classifier_dropout,
- )
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
- output_type=Seq2SeqSequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
- expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
- )
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if labels is not None:
- use_cache = False
- if input_ids is None and inputs_embeds is not None:
- raise NotImplementedError(
- f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
- )
- outputs = self.model(
- input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- encoder_outputs=encoder_outputs,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = outputs[0] # last hidden state
- eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
- if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
- raise ValueError("All examples must have the same number of <eos> tokens.")
- sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
- :, -1, :
- ]
- logits = self.classification_head(sentence_representation)
- loss = None
- if labels is not None:
- labels = labels.to(logits.device)
- if self.config.problem_type is None:
- if self.config.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.config.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return Seq2SeqSequenceClassifierOutput(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- decoder_hidden_states=outputs.decoder_hidden_states,
- decoder_attentions=outputs.decoder_attentions,
- cross_attentions=outputs.cross_attentions,
- encoder_last_hidden_state=outputs.encoder_last_hidden_state,
- encoder_hidden_states=outputs.encoder_hidden_states,
- encoder_attentions=outputs.encoder_attentions,
- )
- @add_start_docstrings(
- """
- BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
- layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- BART_START_DOCSTRING,
- )
- class BartForQuestionAnswering(BartPreTrainedModel):
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
- def __init__(self, config):
- super().__init__(config)
- config.num_labels = 2
- self.num_labels = config.num_labels
- self.model = BartModel(config)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_QA,
- output_type=Seq2SeqQuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_loss=_QA_EXPECTED_LOSS,
- expected_output=_QA_EXPECTED_OUTPUT,
- )
- def forward(
- self,
- input_ids: torch.Tensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if start_positions is not None and end_positions is not None:
- use_cache = False
- outputs = self.model(
- input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- encoder_outputs=encoder_outputs,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (
- start_logits,
- end_logits,
- ) + outputs[1:]
- return ((total_loss,) + output) if total_loss is not None else output
- return Seq2SeqQuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- past_key_values=outputs.past_key_values,
- decoder_hidden_states=outputs.decoder_hidden_states,
- decoder_attentions=outputs.decoder_attentions,
- cross_attentions=outputs.cross_attentions,
- encoder_last_hidden_state=outputs.encoder_last_hidden_state,
- encoder_hidden_states=outputs.encoder_hidden_states,
- encoder_attentions=outputs.encoder_attentions,
- )
- class BartDecoderWrapper(BartPreTrainedModel):
- """
- This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
- used in combination with the [`EncoderDecoderModel`] framework.
- """
- def __init__(self, config):
- super().__init__(config)
- self.decoder = BartDecoder(config)
- def forward(self, *args, **kwargs):
- return self.decoder(*args, **kwargs)
- @add_start_docstrings(
- """
- BART decoder with a language modeling head on top (linear layer with weights tied to the input embeddings).
- """,
- BART_START_DOCSTRING,
- )
- class BartForCausalLM(BartPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config):
- config = copy.deepcopy(config)
- config.is_decoder = True
- config.is_encoder_decoder = False
- super().__init__(config)
- self.model = BartDecoderWrapper(config)
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.model.decoder.embed_tokens
- def set_input_embeddings(self, value):
- self.model.decoder.embed_tokens = value
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def set_decoder(self, decoder):
- self.model.decoder = decoder
- def get_decoder(self):
- return self.model.decoder
- @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
- r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
- if the model is configured as a decoder.
- encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
- in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
- shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
- tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
- cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
- that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
- all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
- (see `past_key_values`).
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, BartForCausalLM
- >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
- >>> model = BartForCausalLM.from_pretrained("facebook/bart-base", add_cross_attention=False)
- >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> logits = outputs.logits
- >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
- >>> list(logits.shape) == expected_shape
- True
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
- outputs = self.model.decoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- head_mask=head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- logits = self.lm_head(outputs[0])
- loss = None
- if labels is not None:
- labels = labels.to(logits.device)
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[1:]
- return (loss,) + output if loss is not None else output
- return CausalLMOutputWithCrossAttentions(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- cross_attentions=outputs.cross_attentions,
- )
- @staticmethod
- def _reorder_cache(past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- reordered_past += (
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
- )
- return reordered_past
|