tokenization_bartpho.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. # coding=utf-8
  2. # Copyright 2021 VinAI Research and the HuggingFace Inc. team.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License
  15. """Tokenization classes for BARTpho-syllable model."""
  16. import os
  17. from shutil import copyfile
  18. from typing import Any, Dict, List, Optional, Tuple
  19. import sentencepiece as spm
  20. from ...tokenization_utils import AddedToken, PreTrainedTokenizer
  21. from ...utils import logging
  22. logger = logging.get_logger(__name__)
  23. SPIECE_UNDERLINE = "▁"
  24. VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
  25. class BartphoTokenizer(PreTrainedTokenizer):
  26. """
  27. Adapted from [`XLMRobertaTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece).
  28. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
  29. this superclass for more information regarding those methods.
  30. Args:
  31. vocab_file (`str`):
  32. Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the
  33. multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types.
  34. monolingual_vocab_file (`str`):
  35. Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized
  36. types extracted from the multilingual vocabulary vocab_file of 250K types.
  37. bos_token (`str`, *optional*, defaults to `"<s>"`):
  38. The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
  39. <Tip>
  40. When building a sequence using special tokens, this is not the token that is used for the beginning of
  41. sequence. The token used is the `cls_token`.
  42. </Tip>
  43. eos_token (`str`, *optional*, defaults to `"</s>"`):
  44. The end of sequence token.
  45. <Tip>
  46. When building a sequence using special tokens, this is not the token that is used for the end of sequence.
  47. The token used is the `sep_token`.
  48. </Tip>
  49. sep_token (`str`, *optional*, defaults to `"</s>"`):
  50. The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
  51. sequence classification or for a text and a question for question answering. It is also used as the last
  52. token of a sequence built with special tokens.
  53. cls_token (`str`, *optional*, defaults to `"<s>"`):
  54. The classifier token which is used when doing sequence classification (classification of the whole sequence
  55. instead of per-token classification). It is the first token of the sequence when built with special tokens.
  56. unk_token (`str`, *optional*, defaults to `"<unk>"`):
  57. The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
  58. token instead.
  59. pad_token (`str`, *optional*, defaults to `"<pad>"`):
  60. The token used for padding, for example when batching sequences of different lengths.
  61. mask_token (`str`, *optional*, defaults to `"<mask>"`):
  62. The token used for masking values. This is the token used when training this model with masked language
  63. modeling. This is the token which the model will try to predict.
  64. sp_model_kwargs (`dict`, *optional*):
  65. Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
  66. SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
  67. to set:
  68. - `enable_sampling`: Enable subword regularization.
  69. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
  70. - `nbest_size = {0,1}`: No sampling is performed.
  71. - `nbest_size > 1`: samples from the nbest_size results.
  72. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
  73. using forward-filtering-and-backward-sampling algorithm.
  74. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
  75. BPE-dropout.
  76. Attributes:
  77. sp_model (`SentencePieceProcessor`):
  78. The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
  79. """
  80. vocab_files_names = VOCAB_FILES_NAMES
  81. model_input_names = ["input_ids", "attention_mask"]
  82. def __init__(
  83. self,
  84. vocab_file,
  85. monolingual_vocab_file,
  86. bos_token="<s>",
  87. eos_token="</s>",
  88. sep_token="</s>",
  89. cls_token="<s>",
  90. unk_token="<unk>",
  91. pad_token="<pad>",
  92. mask_token="<mask>",
  93. sp_model_kwargs: Optional[Dict[str, Any]] = None,
  94. **kwargs,
  95. ) -> None:
  96. # Mask token behave like a normal word, i.e. include the space before it
  97. mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
  98. self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
  99. self.vocab_file = vocab_file
  100. self.monolingual_vocab_file = monolingual_vocab_file
  101. self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
  102. self.sp_model.Load(str(vocab_file))
  103. # Load the reduced vocab
  104. # Keep order of special tokens for backward compatibility
  105. self.fairseq_tokens_to_ids = {}
  106. cnt = 0
  107. for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
  108. if str(token) not in self.fairseq_tokens_to_ids:
  109. self.fairseq_tokens_to_ids[str(token)] = cnt
  110. cnt += 1
  111. with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
  112. for line in f.readlines():
  113. token = line.strip().split()[0]
  114. self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
  115. if str(mask_token) not in self.fairseq_tokens_to_ids:
  116. self.fairseq_tokens_to_ids[str(mask_token)] = len(self.fairseq_tokens_to_ids)
  117. self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
  118. super().__init__(
  119. bos_token=bos_token,
  120. eos_token=eos_token,
  121. unk_token=unk_token,
  122. sep_token=sep_token,
  123. cls_token=cls_token,
  124. pad_token=pad_token,
  125. mask_token=mask_token,
  126. sp_model_kwargs=self.sp_model_kwargs,
  127. **kwargs,
  128. )
  129. def __getstate__(self):
  130. state = self.__dict__.copy()
  131. state["sp_model"] = None
  132. state["sp_model_proto"] = self.sp_model.serialized_model_proto()
  133. return state
  134. def __setstate__(self, d):
  135. self.__dict__ = d
  136. # for backward compatibility
  137. if not hasattr(self, "sp_model_kwargs"):
  138. self.sp_model_kwargs = {}
  139. self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
  140. self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
  141. def build_inputs_with_special_tokens(
  142. self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
  143. ) -> List[int]:
  144. """
  145. Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
  146. adding special tokens. An BARTPho sequence has the following format:
  147. - single sequence: `<s> X </s>`
  148. - pair of sequences: `<s> A </s></s> B </s>`
  149. Args:
  150. token_ids_0 (`List[int]`):
  151. List of IDs to which the special tokens will be added.
  152. token_ids_1 (`List[int]`, *optional*):
  153. Optional second list of IDs for sequence pairs.
  154. Returns:
  155. `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
  156. """
  157. if token_ids_1 is None:
  158. return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
  159. cls = [self.cls_token_id]
  160. sep = [self.sep_token_id]
  161. return cls + token_ids_0 + sep + sep + token_ids_1 + sep
  162. def get_special_tokens_mask(
  163. self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
  164. ) -> List[int]:
  165. """
  166. Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
  167. special tokens using the tokenizer `prepare_for_model` method.
  168. Args:
  169. token_ids_0 (`List[int]`):
  170. List of IDs.
  171. token_ids_1 (`List[int]`, *optional*):
  172. Optional second list of IDs for sequence pairs.
  173. already_has_special_tokens (`bool`, *optional*, defaults to `False`):
  174. Whether or not the token list is already formatted with special tokens for the model.
  175. Returns:
  176. `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
  177. """
  178. if already_has_special_tokens:
  179. return super().get_special_tokens_mask(
  180. token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
  181. )
  182. if token_ids_1 is None:
  183. return [1] + ([0] * len(token_ids_0)) + [1]
  184. return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
  185. def create_token_type_ids_from_sequences(
  186. self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
  187. ) -> List[int]:
  188. """
  189. Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not
  190. make use of token type ids, therefore a list of zeros is returned.
  191. Args:
  192. token_ids_0 (`List[int]`):
  193. List of IDs.
  194. token_ids_1 (`List[int]`, *optional*):
  195. Optional second list of IDs for sequence pairs.
  196. Returns:
  197. `List[int]`: List of zeros.
  198. """
  199. sep = [self.sep_token_id]
  200. cls = [self.cls_token_id]
  201. if token_ids_1 is None:
  202. return len(cls + token_ids_0 + sep) * [0]
  203. return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
  204. @property
  205. def vocab_size(self):
  206. return len(self.fairseq_ids_to_tokens)
  207. def get_vocab(self):
  208. vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
  209. vocab.update(self.added_tokens_encoder)
  210. return vocab
  211. def _tokenize(self, text: str) -> List[str]:
  212. return self.sp_model.encode(text, out_type=str)
  213. def _convert_token_to_id(self, token):
  214. """Converts a token (str) in an id using the vocab."""
  215. if token in self.fairseq_tokens_to_ids:
  216. return self.fairseq_tokens_to_ids[token]
  217. else:
  218. return self.unk_token_id
  219. def _convert_id_to_token(self, index):
  220. """Converts an index (integer) in a token (str) using the vocab."""
  221. return self.fairseq_ids_to_tokens[index]
  222. def convert_tokens_to_string(self, tokens):
  223. """Converts a sequence of tokens (strings for sub-words) in a single string."""
  224. out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
  225. return out_string
  226. def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
  227. if not os.path.isdir(save_directory):
  228. logger.error(f"Vocabulary path ({save_directory}) should be a directory")
  229. return
  230. out_vocab_file = os.path.join(
  231. save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
  232. )
  233. out_monolingual_vocab_file = os.path.join(
  234. save_directory,
  235. (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
  236. )
  237. if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
  238. copyfile(self.vocab_file, out_vocab_file)
  239. elif not os.path.isfile(self.vocab_file):
  240. with open(out_vocab_file, "wb") as fi:
  241. content_spiece_model = self.sp_model.serialized_model_proto()
  242. fi.write(content_spiece_model)
  243. if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
  244. out_monolingual_vocab_file
  245. ) and os.path.isfile(self.monolingual_vocab_file):
  246. copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
  247. elif not os.path.isfile(self.monolingual_vocab_file):
  248. with open(out_monolingual_vocab_file, "w", encoding="utf-8") as fp:
  249. for token in self.fairseq_tokens_to_ids:
  250. if token not in self.all_special_tokens:
  251. fp.write(f"{str(token)} \n")
  252. return out_vocab_file, out_monolingual_vocab_file