| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for Beit."""
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import resize, to_channel_dimension_format
- from ...image_utils import (
- IMAGENET_STANDARD_MEAN,
- IMAGENET_STANDARD_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import (
- TensorType,
- filter_out_non_signature_kwargs,
- is_torch_available,
- is_torch_tensor,
- is_vision_available,
- logging,
- )
- from ...utils.deprecation import deprecate_kwarg
- if is_vision_available():
- import PIL
- if is_torch_available():
- import torch
- logger = logging.get_logger(__name__)
- class BeitImageProcessor(BaseImageProcessor):
- r"""
- Constructs a BEiT image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
- `do_resize` parameter in the `preprocess` method.
- size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
- Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
- method.
- resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
- Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
- `preprocess` method.
- do_center_crop (`bool`, *optional*, defaults to `True`):
- Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
- is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
- `preprocess` method.
- crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
- Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
- Can be overridden by the `crop_size` parameter in the `preprocess` method.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
- `preprocess` method.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
- parameter in the `preprocess` method.
- do_normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
- method.
- image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
- The mean to use if normalizing the image. This is a float or list of floats of length of the number of
- channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
- The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
- number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
- do_reduce_labels (`bool`, *optional*, defaults to `False`):
- Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
- used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
- background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
- `preprocess` method.
- """
- model_input_names = ["pixel_values"]
- @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0")
- @filter_out_non_signature_kwargs(extra=INIT_SERVICE_KWARGS)
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- do_center_crop: bool = True,
- crop_size: Dict[str, int] = None,
- rescale_factor: Union[int, float] = 1 / 255,
- do_rescale: bool = True,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_reduce_labels: bool = False,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"height": 256, "width": 256}
- size = get_size_dict(size)
- crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
- crop_size = get_size_dict(crop_size, param_name="crop_size")
- self.do_resize = do_resize
- self.size = size
- self.resample = resample
- self.do_center_crop = do_center_crop
- self.crop_size = crop_size
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
- self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
- self.do_reduce_labels = do_reduce_labels
- @classmethod
- def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
- """
- Overrides the `from_dict` method from the base class to save support of deprecated `reduce_labels` in old configs
- """
- image_processor_dict = image_processor_dict.copy()
- if "reduce_labels" in image_processor_dict:
- image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels")
- return super().from_dict(image_processor_dict, **kwargs)
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image to (size["height"], size["width"]).
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
- Resampling filter to use when resiizing the image.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- size = get_size_dict(size, default_to_square=True, param_name="size")
- if "height" not in size or "width" not in size:
- raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
- return resize(
- image,
- size=(size["height"], size["width"]),
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- def reduce_label(self, label: ImageInput) -> np.ndarray:
- label = to_numpy_array(label)
- # Avoid using underflow conversion
- label[label == 0] = 255
- label = label - 1
- label[label == 254] = 255
- return label
- def _preprocess(
- self,
- image: ImageInput,
- do_reduce_labels: bool = None,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_center_crop: bool = None,
- crop_size: Dict[str, int] = None,
- do_rescale: bool = None,
- rescale_factor: float = None,
- do_normalize: bool = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ):
- if do_reduce_labels:
- image = self.reduce_label(image)
- if do_resize:
- image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- if do_center_crop:
- image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
- if do_rescale:
- image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- if do_normalize:
- image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
- return image
- def _preprocess_image(
- self,
- image: ImageInput,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_center_crop: bool = None,
- crop_size: Dict[str, int] = None,
- do_rescale: bool = None,
- rescale_factor: float = None,
- do_normalize: bool = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """Preprocesses a single image."""
- # All transformations expect numpy arrays.
- image = to_numpy_array(image)
- if is_scaled_image(image) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(image)
- image = self._preprocess(
- image,
- do_reduce_labels=False,
- do_resize=do_resize,
- size=size,
- resample=resample,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- input_data_format=input_data_format,
- )
- if data_format is not None:
- image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
- return image
- def _preprocess_segmentation_map(
- self,
- segmentation_map: ImageInput,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_center_crop: bool = None,
- crop_size: Dict[str, int] = None,
- do_reduce_labels: bool = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ):
- """Preprocesses a single segmentation map."""
- # All transformations expect numpy arrays.
- segmentation_map = to_numpy_array(segmentation_map)
- # Add an axis to the segmentation maps for transformations.
- if segmentation_map.ndim == 2:
- segmentation_map = segmentation_map[None, ...]
- added_dimension = True
- input_data_format = ChannelDimension.FIRST
- else:
- added_dimension = False
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
- segmentation_map = self._preprocess(
- image=segmentation_map,
- do_reduce_labels=do_reduce_labels,
- do_resize=do_resize,
- resample=resample,
- size=size,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_normalize=False,
- do_rescale=False,
- input_data_format=ChannelDimension.FIRST,
- )
- # Remove extra axis if added
- if added_dimension:
- segmentation_map = np.squeeze(segmentation_map, axis=0)
- segmentation_map = segmentation_map.astype(np.int64)
- return segmentation_map
- def __call__(self, images, segmentation_maps=None, **kwargs):
- # Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
- # be passed in as positional arguments.
- return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
- @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0")
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- segmentation_maps: Optional[ImageInput] = None,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_center_crop: bool = None,
- crop_size: Dict[str, int] = None,
- do_rescale: bool = None,
- rescale_factor: float = None,
- do_normalize: bool = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_reduce_labels: Optional[bool] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- segmentation_maps (`ImageInput`, *optional*)
- Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image after resizing.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
- has an effect if `do_resize` is set to `True`.
- do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
- Whether to center crop the image.
- crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
- Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
- padded with zeros and then cropped
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image values between [0 - 1].
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation.
- do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
- Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
- is used for background, and background itself is not included in all classes of a dataset (e.g.
- ADE20k). The background label will be replaced by 255.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - Unset: Use the channel dimension format of the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- size = get_size_dict(size, default_to_square=True, param_name="size")
- resample = resample if resample is not None else self.resample
- do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
- crop_size = crop_size if crop_size is not None else self.crop_size
- crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
- images = make_list_of_images(images)
- if segmentation_maps is not None:
- segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
- if segmentation_maps is not None and not valid_images(segmentation_maps):
- raise ValueError(
- "Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- images = [
- self._preprocess_image(
- image=img,
- do_resize=do_resize,
- do_center_crop=do_center_crop,
- do_rescale=do_rescale,
- do_normalize=do_normalize,
- resample=resample,
- size=size,
- rescale_factor=rescale_factor,
- crop_size=crop_size,
- image_mean=image_mean,
- image_std=image_std,
- data_format=data_format,
- input_data_format=input_data_format,
- )
- for img in images
- ]
- data = {"pixel_values": images}
- if segmentation_maps is not None:
- segmentation_maps = [
- self._preprocess_segmentation_map(
- segmentation_map=segmentation_map,
- do_reduce_labels=do_reduce_labels,
- do_resize=do_resize,
- resample=resample,
- size=size,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- )
- for segmentation_map in segmentation_maps
- ]
- data["labels"] = segmentation_maps
- return BatchFeature(data=data, tensor_type=return_tensors)
- def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
- """
- Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
- Args:
- outputs ([`BeitForSemanticSegmentation`]):
- Raw outputs of the model.
- target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
- List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
- predictions will not be resized.
- Returns:
- semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
- segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
- specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
- """
- # TODO: add support for other frameworks
- logits = outputs.logits
- # Resize logits and compute semantic segmentation maps
- if target_sizes is not None:
- if len(logits) != len(target_sizes):
- raise ValueError(
- "Make sure that you pass in as many target sizes as the batch dimension of the logits"
- )
- if is_torch_tensor(target_sizes):
- target_sizes = target_sizes.numpy()
- semantic_segmentation = []
- for idx in range(len(logits)):
- resized_logits = torch.nn.functional.interpolate(
- logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
- )
- semantic_map = resized_logits[0].argmax(dim=0)
- semantic_segmentation.append(semantic_map)
- else:
- semantic_segmentation = logits.argmax(dim=1)
- semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
- return semantic_segmentation
|