configuration_bert.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. # coding=utf-8
  2. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
  3. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. #
  9. # http://www.apache.org/licenses/LICENSE-2.0
  10. #
  11. # Unless required by applicable law or agreed to in writing, software
  12. # distributed under the License is distributed on an "AS IS" BASIS,
  13. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14. # See the License for the specific language governing permissions and
  15. # limitations under the License.
  16. """BERT model configuration"""
  17. from collections import OrderedDict
  18. from typing import Mapping
  19. from ...configuration_utils import PretrainedConfig
  20. from ...onnx import OnnxConfig
  21. from ...utils import logging
  22. logger = logging.get_logger(__name__)
  23. class BertConfig(PretrainedConfig):
  24. r"""
  25. This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
  26. instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
  27. configuration with the defaults will yield a similar configuration to that of the BERT
  28. [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.
  29. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
  30. documentation from [`PretrainedConfig`] for more information.
  31. Args:
  32. vocab_size (`int`, *optional*, defaults to 30522):
  33. Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
  34. `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
  35. hidden_size (`int`, *optional*, defaults to 768):
  36. Dimensionality of the encoder layers and the pooler layer.
  37. num_hidden_layers (`int`, *optional*, defaults to 12):
  38. Number of hidden layers in the Transformer encoder.
  39. num_attention_heads (`int`, *optional*, defaults to 12):
  40. Number of attention heads for each attention layer in the Transformer encoder.
  41. intermediate_size (`int`, *optional*, defaults to 3072):
  42. Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
  43. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
  44. The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
  45. `"relu"`, `"silu"` and `"gelu_new"` are supported.
  46. hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
  47. The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
  48. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
  49. The dropout ratio for the attention probabilities.
  50. max_position_embeddings (`int`, *optional*, defaults to 512):
  51. The maximum sequence length that this model might ever be used with. Typically set this to something large
  52. just in case (e.g., 512 or 1024 or 2048).
  53. type_vocab_size (`int`, *optional*, defaults to 2):
  54. The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
  55. initializer_range (`float`, *optional*, defaults to 0.02):
  56. The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
  57. layer_norm_eps (`float`, *optional*, defaults to 1e-12):
  58. The epsilon used by the layer normalization layers.
  59. position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
  60. Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
  61. positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
  62. [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
  63. For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
  64. with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
  65. is_decoder (`bool`, *optional*, defaults to `False`):
  66. Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
  67. use_cache (`bool`, *optional*, defaults to `True`):
  68. Whether or not the model should return the last key/values attentions (not used by all models). Only
  69. relevant if `config.is_decoder=True`.
  70. classifier_dropout (`float`, *optional*):
  71. The dropout ratio for the classification head.
  72. Examples:
  73. ```python
  74. >>> from transformers import BertConfig, BertModel
  75. >>> # Initializing a BERT google-bert/bert-base-uncased style configuration
  76. >>> configuration = BertConfig()
  77. >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
  78. >>> model = BertModel(configuration)
  79. >>> # Accessing the model configuration
  80. >>> configuration = model.config
  81. ```"""
  82. model_type = "bert"
  83. def __init__(
  84. self,
  85. vocab_size=30522,
  86. hidden_size=768,
  87. num_hidden_layers=12,
  88. num_attention_heads=12,
  89. intermediate_size=3072,
  90. hidden_act="gelu",
  91. hidden_dropout_prob=0.1,
  92. attention_probs_dropout_prob=0.1,
  93. max_position_embeddings=512,
  94. type_vocab_size=2,
  95. initializer_range=0.02,
  96. layer_norm_eps=1e-12,
  97. pad_token_id=0,
  98. position_embedding_type="absolute",
  99. use_cache=True,
  100. classifier_dropout=None,
  101. **kwargs,
  102. ):
  103. super().__init__(pad_token_id=pad_token_id, **kwargs)
  104. self.vocab_size = vocab_size
  105. self.hidden_size = hidden_size
  106. self.num_hidden_layers = num_hidden_layers
  107. self.num_attention_heads = num_attention_heads
  108. self.hidden_act = hidden_act
  109. self.intermediate_size = intermediate_size
  110. self.hidden_dropout_prob = hidden_dropout_prob
  111. self.attention_probs_dropout_prob = attention_probs_dropout_prob
  112. self.max_position_embeddings = max_position_embeddings
  113. self.type_vocab_size = type_vocab_size
  114. self.initializer_range = initializer_range
  115. self.layer_norm_eps = layer_norm_eps
  116. self.position_embedding_type = position_embedding_type
  117. self.use_cache = use_cache
  118. self.classifier_dropout = classifier_dropout
  119. class BertOnnxConfig(OnnxConfig):
  120. @property
  121. def inputs(self) -> Mapping[str, Mapping[int, str]]:
  122. if self.task == "multiple-choice":
  123. dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
  124. else:
  125. dynamic_axis = {0: "batch", 1: "sequence"}
  126. return OrderedDict(
  127. [
  128. ("input_ids", dynamic_axis),
  129. ("attention_mask", dynamic_axis),
  130. ("token_type_ids", dynamic_axis),
  131. ]
  132. )