| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """BiT model configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
- logger = logging.get_logger(__name__)
- class BitConfig(BackboneConfigMixin, PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the BiT
- [google/bit-50](https://huggingface.co/google/bit-50) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- num_channels (`int`, *optional*, defaults to 3):
- The number of input channels.
- embedding_size (`int`, *optional*, defaults to 64):
- Dimensionality (hidden size) for the embedding layer.
- hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
- Dimensionality (hidden size) at each stage.
- depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
- Depth (number of layers) for each stage.
- layer_type (`str`, *optional*, defaults to `"preactivation"`):
- The layer to use, it can be either `"preactivation"` or `"bottleneck"`.
- hidden_act (`str`, *optional*, defaults to `"relu"`):
- The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
- are supported.
- global_padding (`str`, *optional*):
- Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`.
- num_groups (`int`, *optional*, defaults to 32):
- Number of groups used for the `BitGroupNormActivation` layers.
- drop_path_rate (`float`, *optional*, defaults to 0.0):
- The drop path rate for the stochastic depth.
- embedding_dynamic_padding (`bool`, *optional*, defaults to `False`):
- Whether or not to make use of dynamic padding for the embedding layer.
- output_stride (`int`, *optional*, defaults to 32):
- The output stride of the model.
- width_factor (`int`, *optional*, defaults to 1):
- The width factor for the model.
- out_features (`List[str]`, *optional*):
- If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
- (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
- corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
- same order as defined in the `stage_names` attribute.
- out_indices (`List[int]`, *optional*):
- If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
- many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
- If unset and `out_features` is unset, will default to the last stage. Must be in the
- same order as defined in the `stage_names` attribute.
- Example:
- ```python
- >>> from transformers import BitConfig, BitModel
- >>> # Initializing a BiT bit-50 style configuration
- >>> configuration = BitConfig()
- >>> # Initializing a model (with random weights) from the bit-50 style configuration
- >>> model = BitModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```
- """
- model_type = "bit"
- layer_types = ["preactivation", "bottleneck"]
- supported_padding = ["SAME", "VALID"]
- def __init__(
- self,
- num_channels=3,
- embedding_size=64,
- hidden_sizes=[256, 512, 1024, 2048],
- depths=[3, 4, 6, 3],
- layer_type="preactivation",
- hidden_act="relu",
- global_padding=None,
- num_groups=32,
- drop_path_rate=0.0,
- embedding_dynamic_padding=False,
- output_stride=32,
- width_factor=1,
- out_features=None,
- out_indices=None,
- **kwargs,
- ):
- super().__init__(**kwargs)
- if layer_type not in self.layer_types:
- raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
- if global_padding is not None:
- if global_padding.upper() in self.supported_padding:
- global_padding = global_padding.upper()
- else:
- raise ValueError(f"Padding strategy {global_padding} not supported")
- self.num_channels = num_channels
- self.embedding_size = embedding_size
- self.hidden_sizes = hidden_sizes
- self.depths = depths
- self.layer_type = layer_type
- self.hidden_act = hidden_act
- self.global_padding = global_padding
- self.num_groups = num_groups
- self.drop_path_rate = drop_path_rate
- self.embedding_dynamic_padding = embedding_dynamic_padding
- self.output_stride = output_stride
- self.width_factor = width_factor
- self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
- self._out_features, self._out_indices = get_aligned_output_features_output_indices(
- out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
- )
|