| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for BiT."""
- from typing import Dict, List, Optional, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import (
- convert_to_rgb,
- get_resize_output_image_size,
- resize,
- to_channel_dimension_format,
- )
- from ...image_utils import (
- OPENAI_CLIP_MEAN,
- OPENAI_CLIP_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
- logger = logging.get_logger(__name__)
- if is_vision_available():
- import PIL
- class BitImageProcessor(BaseImageProcessor):
- r"""
- Constructs a BiT image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
- `do_resize` in the `preprocess` method.
- size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
- Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
- the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
- method.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
- do_center_crop (`bool`, *optional*, defaults to `True`):
- Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
- `preprocess` method.
- crop_size (`Dict[str, int]` *optional*, defaults to 224):
- Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
- method.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
- the `preprocess` method.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
- method.
- do_normalize:
- Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
- image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
- Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
- number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
- Can be overridden by the `image_std` parameter in the `preprocess` method.
- do_convert_rgb (`bool`, *optional*, defaults to `True`):
- Whether to convert the image to RGB.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- do_center_crop: bool = True,
- crop_size: Dict[str, int] = None,
- do_rescale: bool = True,
- rescale_factor: Union[int, float] = 1 / 255,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_convert_rgb: bool = True,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"shortest_edge": 224}
- size = get_size_dict(size, default_to_square=False)
- crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
- crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
- self.do_resize = do_resize
- self.size = size
- self.resample = resample
- self.do_center_crop = do_center_crop
- self.crop_size = crop_size
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
- self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
- self.do_convert_rgb = do_convert_rgb
- # Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
- resized to keep the input aspect ratio.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Resampling filter to use when resiizing the image.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- default_to_square = True
- if "shortest_edge" in size:
- size = size["shortest_edge"]
- default_to_square = False
- elif "height" in size and "width" in size:
- size = (size["height"], size["width"])
- else:
- raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
- output_size = get_resize_output_image_size(
- image,
- size=size,
- default_to_square=default_to_square,
- input_data_format=input_data_format,
- )
- return resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_center_crop: bool = None,
- crop_size: int = None,
- do_rescale: bool = None,
- rescale_factor: float = None,
- do_normalize: bool = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_convert_rgb: bool = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
- the longest edge resized to keep the input aspect ratio.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
- has an effect if `do_resize` is set to `True`.
- do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
- Whether to center crop the image.
- crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
- Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image.
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
- `True`.
- do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
- Whether to convert the image to RGB.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - Unset: Use the channel dimension format of the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- size = get_size_dict(size, param_name="size", default_to_square=False)
- resample = resample if resample is not None else self.resample
- do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
- crop_size = crop_size if crop_size is not None else self.crop_size
- crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- # PIL RGBA images are converted to RGB
- if do_convert_rgb:
- images = [convert_to_rgb(image) for image in images]
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if is_scaled_image(images[0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- all_images = []
- for image in images:
- if do_resize:
- image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- if do_center_crop:
- image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
- if do_rescale:
- image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- if do_normalize:
- image = self.normalize(
- image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
- )
- all_images.append(image)
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
- for image in all_images
- ]
- data = {"pixel_values": images}
- return BatchFeature(data=data, tensor_type=return_tensors)
|