| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565 |
- # coding=utf-8
- # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch BLIP model."""
- import warnings
- from dataclasses import dataclass
- from typing import Any, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn.functional import normalize
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- ModelOutput,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- torch_int,
- )
- from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig
- from .modeling_blip_text import BlipTextLMHeadModel, BlipTextModel
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base"
- # Copied from transformers.models.clip.modeling_clip.contrastive_loss
- def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
- return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
- # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip
- def blip_loss(similarity: torch.Tensor) -> torch.Tensor:
- caption_loss = contrastive_loss(similarity)
- image_loss = contrastive_loss(similarity.t())
- return (caption_loss + image_loss) / 2.0
- @dataclass
- class BlipForConditionalGenerationModelOutput(ModelOutput):
- """
- Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
- last hidden states. This class also adds the loss term from the text decoder.
- Args:
- loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
- Languge modeling loss from the text decoder.
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
- Prediction scores of the language modeling head of the text decoder model.
- image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*):
- The image embeddings obtained after applying the Vision Transformer model to the input image.
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the model.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- loss: Optional[Tuple[torch.FloatTensor]] = None
- logits: Optional[Tuple[torch.FloatTensor]] = None
- image_embeds: Optional[torch.FloatTensor] = None
- last_hidden_state: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- @property
- def decoder_logits(self):
- warnings.warn(
- "`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers."
- " Please use the `logits` attribute to retrieve the final output instead.",
- FutureWarning,
- )
- return self.logits
- @dataclass
- class BlipTextVisionModelOutput(ModelOutput):
- """
- Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
- last hidden states. This class also adds the loss term from the text decoder.
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Languge modeling loss from the text decoder.
- image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
- The image embeddings obtained by applying the projection layer to the pooler_output.
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- loss: Optional[torch.FloatTensor] = None
- image_embeds: Optional[torch.FloatTensor] = None
- last_hidden_state: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- @dataclass
- class BlipImageTextMatchingModelOutput(ModelOutput):
- """
- Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
- last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
- scores.
- Args:
- itm_score (`torch.FloatTensor`):
- The image-text similarity scores.
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Languge modeling loss from the text decoder.
- image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
- The image embeddings obtained by applying the projection layer to the pooler_output.
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
- Last layer hidden-state of the vision of the vision-only branch of the model.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- question_embeds (`torch.FloatTensor`):
- The question embeddings obtained by the text projection layer.
- """
- itm_score: Optional[torch.FloatTensor] = None
- loss: Optional[torch.FloatTensor] = None
- image_embeds: Optional[torch.FloatTensor] = None
- last_hidden_state: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- vision_pooler_output: Optional[torch.FloatTensor] = None
- attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- question_embeds: Optional[Tuple[torch.FloatTensor]] = None
- @dataclass
- class BlipOutput(ModelOutput):
- """
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
- Contrastive loss for image-text similarity.
- logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
- The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
- similarity scores.
- logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
- The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
- similarity scores.
- text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
- image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
- text_model_output(`BaseModelOutputWithPooling`):
- The output of the [`BlipTextModel`].
- vision_model_output(`BaseModelOutputWithPooling`):
- The output of the [`BlipVisionModel`].
- """
- loss: Optional[torch.FloatTensor] = None
- logits_per_image: torch.FloatTensor = None
- logits_per_text: torch.FloatTensor = None
- text_embeds: torch.FloatTensor = None
- image_embeds: torch.FloatTensor = None
- text_model_output: BaseModelOutputWithPooling = None
- vision_model_output: BaseModelOutputWithPooling = None
- def to_tuple(self) -> Tuple[Any]:
- return tuple(
- self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
- for k in self.keys()
- )
- class BlipVisionEmbeddings(nn.Module):
- def __init__(self, config: BlipVisionConfig):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.image_size = config.image_size
- self.patch_size = config.patch_size
- self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
- self.patch_embedding = nn.Conv2d(
- in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
- )
- self.num_patches = (self.image_size // self.patch_size) ** 2
- self.num_positions = self.num_patches + 1
- self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
- def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
- """
- This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
- images. This method is also adapted to support torch.jit tracing.
- Adapted from:
- - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
- """
- num_patches = embeddings.shape[1] - 1
- num_positions = self.position_embedding.shape[1] - 1
- # always interpolate when tracing to ensure the exported model works for dynamic input shapes
- if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
- return self.position_embedding
- class_pos_embed = self.position_embedding[:, :1]
- patch_pos_embed = self.position_embedding[:, 1:]
- dim = embeddings.shape[-1]
- new_height = height // self.patch_size
- new_width = width // self.patch_size
- sqrt_num_positions = torch_int(num_positions**0.5)
- patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
- patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
- patch_pos_embed = nn.functional.interpolate(
- patch_pos_embed,
- size=(new_height, new_width),
- mode="bicubic",
- align_corners=False,
- )
- patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
- return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
- def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
- batch_size, _, height, width = pixel_values.shape
- target_dtype = self.patch_embedding.weight.dtype
- patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
- patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
- class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
- embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
- if interpolate_pos_encoding:
- position_embedding = self.interpolate_pos_encoding(embeddings, height, width)
- else:
- position_embedding = self.position_embedding
- embeddings = embeddings + position_embedding[:, : embeddings.size(1), :].to(target_dtype)
- return embeddings
- # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip
- class BlipTextEmbeddings(nn.Module):
- def __init__(self, config: BlipTextConfig):
- super().__init__()
- embed_dim = config.hidden_size
- self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
- self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- ) -> torch.Tensor:
- seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if inputs_embeds is None:
- inputs_embeds = self.token_embedding(input_ids)
- position_embeddings = self.position_embedding(position_ids)
- embeddings = inputs_embeds + position_embeddings
- return embeddings
- class BlipAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.embed_dim // self.num_heads
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
- f" {self.num_heads})."
- )
- self.scale = self.head_dim**-0.5
- self.dropout = nn.Dropout(config.attention_dropout)
- self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim)
- self.projection = nn.Linear(self.embed_dim, self.embed_dim)
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- """Input shape: Batch x Time x Channel"""
- bsz, tgt_len, embed_dim = hidden_states.size()
- mixed_qkv = (
- self.qkv(hidden_states)
- .reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads)
- .permute(2, 0, 3, 1, 4)
- )
- query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
- attention_scores = attention_scores * self.scale
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
- new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
- context_layer = context_layer.reshape(new_context_layer_shape)
- output = self.projection(context_layer)
- outputs = (output, attention_probs) if output_attentions else (output, None)
- return outputs
- # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip
- class BlipMLP(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.activation_fn = ACT2FN[config.hidden_act]
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.fc1(hidden_states)
- hidden_states = self.activation_fn(hidden_states)
- hidden_states = self.fc2(hidden_states)
- return hidden_states
- class BlipEncoderLayer(nn.Module):
- def __init__(self, config: BlipConfig):
- super().__init__()
- self.embed_dim = config.hidden_size
- self.self_attn = BlipAttention(config)
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- self.mlp = BlipMLP(config)
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: torch.Tensor,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.FloatTensor]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- `(config.encoder_attention_heads,)`.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- """
- residual = hidden_states
- hidden_states = self.layer_norm1(hidden_states)
- hidden_states, attn_weights = self.self_attn(
- hidden_states=hidden_states,
- head_mask=attention_mask,
- output_attentions=output_attentions,
- )
- hidden_states = hidden_states + residual
- residual = hidden_states
- hidden_states = self.layer_norm2(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = hidden_states + residual
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (attn_weights,)
- return outputs
- class BlipPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = BlipConfig
- base_model_prefix = "blip"
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- """Initialize the weights"""
- factor = self.config.initializer_range
- if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
- module.weight.data.normal_(mean=0.0, std=factor)
- if hasattr(module, "bias") and module.bias is not None:
- module.bias.data.zero_()
- if isinstance(module, BlipVisionEmbeddings):
- if hasattr(self.config, "vision_config"):
- factor = self.config.vision_config.initializer_range
- nn.init.trunc_normal_(
- module.position_embedding,
- mean=0.0,
- std=factor,
- )
- nn.init.trunc_normal_(
- module.class_embedding,
- mean=0.0,
- std=factor,
- )
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- elif isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
- BLIP_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`BlipConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- BLIP_TEXT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- BLIP_VISION_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
- [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
- Whether to interpolate the pre-trained position encodings.
- """
- BLIP_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
- [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
- return_loss (`bool`, *optional*):
- Whether or not to return the contrastive loss.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
- Whether to interpolate the pre-trained position encodings.
- """
- class BlipEncoder(nn.Module):
- """
- Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
- [`BlipEncoderLayer`].
- Args:
- config (`BlipConfig`):
- The corresponding vision configuration for the `BlipEncoder`.
- """
- def __init__(self, config: BlipConfig):
- super().__init__()
- self.config = config
- self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- inputs_embeds,
- attention_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutput]:
- r"""
- Args:
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Embedded representation of the inputs. Should be float, not int tokens.
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- encoder_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- hidden_states = inputs_embeds
- for idx, encoder_layer in enumerate(self.layers):
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- encoder_layer.__call__,
- hidden_states,
- attention_mask,
- output_attentions,
- )
- else:
- layer_outputs = encoder_layer(
- hidden_states,
- attention_mask,
- output_attentions=output_attentions,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
- )
- class BlipVisionModel(BlipPreTrainedModel):
- main_input_name = "pixel_values"
- config_class = BlipVisionConfig
- def __init__(self, config: BlipVisionConfig):
- super().__init__(config)
- self.config = config
- embed_dim = config.hidden_size
- self.embeddings = BlipVisionEmbeddings(config)
- self.encoder = BlipEncoder(config)
- self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
- self.post_init()
- @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig)
- def forward(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- r"""
- Returns:
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
- encoder_outputs = self.encoder(
- inputs_embeds=hidden_states,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- last_hidden_state = encoder_outputs[0]
- last_hidden_state = self.post_layernorm(last_hidden_state)
- pooled_output = last_hidden_state[:, 0, :]
- pooled_output = self.post_layernorm(pooled_output)
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- def get_input_embeddings(self):
- return self.embeddings
- @add_start_docstrings(
- """
- This model is going to be deprecated in future versions. Please use `BlipForConditionalGeneration`, `BlipForQuestionAnswering` or `BlipForImageTextRetrieval` depending on your usecase.
- """,
- BLIP_START_DOCSTRING,
- )
- class BlipModel(BlipPreTrainedModel):
- config_class = BlipConfig
- def __init__(self, config: BlipConfig):
- super().__init__(config)
- if not isinstance(config.text_config, BlipTextConfig):
- raise TypeError(
- "config.text_config is expected to be of type BlipTextConfig but is of type"
- f" {type(config.text_config)}."
- )
- if not isinstance(config.vision_config, BlipVisionConfig):
- raise TypeError(
- "config.vision_config is expected to be of type BlipVisionConfig but is of type"
- f" {type(config.vision_config)}."
- )
- text_config = config.text_config
- vision_config = config.vision_config
- self.projection_dim = config.projection_dim
- self.text_embed_dim = text_config.hidden_size
- self.vision_embed_dim = vision_config.hidden_size
- self.text_model = BlipTextModel(text_config)
- self.vision_model = BlipVisionModel(vision_config)
- self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
- self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
- self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
- logger.warning(
- "`BlipModel` is going to be deprecated in future release, please use `BlipForConditionalGeneration`, `BlipForQuestionAnswering` or `BlipForImageTextRetrieval` depending on your usecase."
- )
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
- def get_text_features(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
- applying the projection layer to the pooled output of [`BlipTextModel`].
- Examples:
- ```python
- >>> from transformers import AutoProcessor, BlipModel
- >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
- >>> text_features = model.get_text_features(**inputs)
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- return_dict=return_dict,
- )
- pooled_output = text_outputs[1]
- text_features = self.text_projection(pooled_output)
- return text_features
- @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
- def get_image_features(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
- applying the projection layer to the pooled output of [`BlipVisionModel`].
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipModel
- >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, return_tensors="pt")
- >>> image_features = model.get_image_features(**inputs)
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- return_dict=return_dict,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- pooled_output = vision_outputs[1] # pooled_output
- image_features = self.visual_projection(pooled_output)
- return image_features
- @add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
- def get_multimodal_features(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- pixel_values: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- multimodal_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The multimodal embeddings
- obtained by applying the image embeddings to the text encoder using the cross-attention mechanism.
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipModel
- >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> texts = ["a photo of a cat", "a photo of a dog"]
- >>> inputs = processor(images=image, text=texts, padding=True, return_tensors="pt")
- >>> multimodal_features = model.get_multimodal_features(**inputs)
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_attentions=True,
- output_hidden_states=True,
- return_dict=return_dict,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- image_embeds = vision_outputs[0]
- image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=image_embeds,
- encoder_attention_mask=image_atts,
- return_dict=return_dict,
- )
- pooled_output = text_outputs[1] # pooled_output
- multimodal_features = self.text_projection(pooled_output)
- return multimodal_features
- @add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- pixel_values: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- return_loss: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- ) -> Union[Tuple, BlipOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipModel
- >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(
- ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
- ... )
- >>> outputs = model(**inputs)
- >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
- >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
- ```"""
- # Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- image_embeds = vision_outputs[1]
- image_embeds = self.visual_projection(image_embeds)
- text_embeds = text_outputs[1]
- text_embeds = self.text_projection(text_embeds)
- # normalized features
- image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
- text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
- # cosine similarity as logits
- logit_scale = self.logit_scale.exp()
- logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
- logits_per_image = logits_per_text.t()
- loss = None
- if return_loss:
- loss = blip_loss(logits_per_text)
- if not return_dict:
- output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
- return ((loss,) + output) if loss is not None else output
- return BlipOutput(
- loss=loss,
- logits_per_image=logits_per_image,
- logits_per_text=logits_per_text,
- text_embeds=text_embeds,
- image_embeds=image_embeds,
- text_model_output=text_outputs,
- vision_model_output=vision_outputs,
- )
- @add_start_docstrings(
- """
- BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass
- `input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise,
- the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption
- from the text input. If no text input is provided, the decoder will start with the [BOS] token only.
- """,
- BLIP_START_DOCSTRING,
- )
- class BlipForConditionalGeneration(BlipPreTrainedModel, GenerationMixin):
- config_class = BlipConfig
- _tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
- main_input_name = "pixel_values"
- def __init__(self, config: BlipConfig):
- super().__init__(config)
- self.vision_model = BlipVisionModel(config.vision_config)
- self.text_decoder = BlipTextLMHeadModel(config.text_config)
- self.decoder_input_ids = config.text_config.bos_token_id
- self.decoder_pad_token_id = config.text_config.pad_token_id
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.vision_model.embeddings.patch_embedding
- @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig)
- def forward(
- self,
- pixel_values: torch.FloatTensor,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- labels: Optional[torch.LongTensor] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- ) -> Union[Tuple, BlipForConditionalGenerationModelOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipForConditionalGeneration
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> text = "A picture of"
- >>> inputs = processor(images=image, text=text, return_tensors="pt")
- >>> outputs = model(**inputs)
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- image_embeds = vision_outputs[0]
- outputs = self.text_decoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=image_embeds,
- labels=labels,
- return_dict=return_dict,
- reduction="mean",
- )
- if not return_dict:
- outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
- return tuple(output for output in outputs if output is not None)
- return BlipForConditionalGenerationModelOutput(
- loss=outputs.loss,
- logits=outputs.logits,
- image_embeds=image_embeds,
- last_hidden_state=vision_outputs.last_hidden_state,
- hidden_states=vision_outputs.hidden_states,
- attentions=vision_outputs.attentions,
- )
- @torch.no_grad()
- def generate(
- self,
- pixel_values: torch.FloatTensor,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.LongTensor] = None,
- interpolate_pos_encoding: bool = False,
- **generate_kwargs,
- ) -> torch.LongTensor:
- r"""
- Overrides *generate* function to be able to use the model as a conditional generator
- Parameters:
- pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
- Input image to be processed
- input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
- The sequence used as a prompt for the generation.
- attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipForConditionalGeneration
- >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, return_tensors="pt")
- >>> outputs = model.generate(**inputs)
- >>> print(processor.decode(outputs[0], skip_special_tokens=True))
- two cats sleeping on a couch
- ```
- """
- batch_size = pixel_values.shape[0]
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- image_embeds = vision_outputs[0]
- image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
- if isinstance(input_ids, list):
- input_ids = torch.LongTensor(input_ids)
- elif input_ids is None:
- input_ids = (
- torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]])
- .repeat(batch_size, 1)
- .to(image_embeds.device)
- )
- input_ids[:, 0] = self.config.text_config.bos_token_id
- attention_mask = attention_mask[:, :-1] if attention_mask is not None else None
- outputs = self.text_decoder.generate(
- input_ids=input_ids[:, :-1],
- eos_token_id=self.config.text_config.sep_token_id,
- pad_token_id=self.config.text_config.pad_token_id,
- attention_mask=attention_mask,
- encoder_hidden_states=image_embeds,
- encoder_attention_mask=image_attention_mask,
- **generate_kwargs,
- )
- return outputs
- @add_start_docstrings(
- """
- BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text
- decoder. The vision encoder will encode the input image, the text encoder will encode the input question together
- with the encoding of the image, and the text decoder will output the answer to the question.
- """,
- BLIP_START_DOCSTRING,
- )
- class BlipForQuestionAnswering(BlipPreTrainedModel):
- config_class = BlipConfig
- _tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
- def __init__(self, config: BlipConfig):
- super().__init__(config)
- self.vision_model = BlipVisionModel(config.vision_config)
- self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
- self.text_decoder = BlipTextLMHeadModel(config.text_config)
- self.decoder_pad_token_id = config.text_config.pad_token_id
- self.decoder_start_token_id = config.text_config.bos_token_id
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.vision_model.embeddings.patch_embedding
- @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
- def forward(
- self,
- input_ids: torch.LongTensor,
- pixel_values: torch.FloatTensor,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- labels: Optional[torch.LongTensor] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- ) -> Union[Tuple, BlipTextVisionModelOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipForQuestionAnswering
- >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> # training
- >>> text = "How many cats are in the picture?"
- >>> label = "2"
- >>> inputs = processor(images=image, text=text, return_tensors="pt")
- >>> labels = processor(text=label, return_tensors="pt").input_ids
- >>> inputs["labels"] = labels
- >>> outputs = model(**inputs)
- >>> loss = outputs.loss
- >>> loss.backward()
- >>> # inference
- >>> text = "How many cats are in the picture?"
- >>> inputs = processor(images=image, text=text, return_tensors="pt")
- >>> outputs = model.generate(**inputs)
- >>> print(processor.decode(outputs[0], skip_special_tokens=True))
- 2
- ```"""
- if labels is None and decoder_input_ids is None:
- raise ValueError(
- "Either `decoder_input_ids` or `labels` should be passed when calling `forward` with"
- " `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
- " are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- image_embeds = vision_outputs[0]
- image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
- question_embeds = self.text_encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=image_embeds,
- encoder_attention_mask=image_attention_mask,
- return_dict=return_dict,
- )
- if labels is not None and decoder_input_ids is None:
- # labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
- decoder_input_ids = labels
- question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
- answer_output = self.text_decoder(
- input_ids=decoder_input_ids,
- attention_mask=decoder_attention_mask,
- encoder_hidden_states=question_embeds,
- encoder_attention_mask=attention_mask,
- labels=labels,
- return_dict=return_dict,
- reduction="mean",
- )
- if labels is not None:
- decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean()
- else:
- decoder_loss = None
- if not return_dict:
- outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
- return tuple(output for output in outputs if output is not None)
- return BlipTextVisionModelOutput(
- loss=decoder_loss,
- image_embeds=image_embeds,
- last_hidden_state=vision_outputs.last_hidden_state,
- hidden_states=vision_outputs.hidden_states,
- attentions=vision_outputs.attentions,
- )
- @torch.no_grad()
- def generate(
- self,
- input_ids: torch.LongTensor,
- pixel_values: torch.FloatTensor,
- attention_mask: Optional[torch.LongTensor] = None,
- interpolate_pos_encoding: bool = False,
- **generate_kwargs,
- ) -> torch.LongTensor:
- r"""
- Overrides *generate* function to be able to use the model as a conditional generator
- Parameters:
- input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*):
- The sequence used as a prompt for the generation.
- pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
- Input image to be processed
- attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
- tokens that are NOT MASKED, `0` for MASKED tokens.
- **generate_kwargs:
- Additional arguments passed to the *generate* function of the decoder
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipForQuestionAnswering
- >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> text = "How many cats are in the picture?"
- >>> inputs = processor(images=image, text=text, return_tensors="pt")
- >>> outputs = model.generate(**inputs)
- >>> print(processor.decode(outputs[0], skip_special_tokens=True))
- 2
- ```
- """
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- image_embeds = vision_outputs[0]
- image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
- if isinstance(input_ids, list):
- input_ids = torch.LongTensor(input_ids)
- question_outputs = self.text_encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=image_embeds,
- encoder_attention_mask=image_attention_mask,
- return_dict=False,
- )
- question_embeds = question_outputs[0]
- question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device)
- bos_ids = torch.full(
- (question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device
- )
- outputs = self.text_decoder.generate(
- input_ids=bos_ids,
- eos_token_id=self.config.text_config.sep_token_id,
- pad_token_id=self.config.text_config.pad_token_id,
- encoder_hidden_states=question_embeds,
- encoder_attention_mask=question_attention_mask,
- **generate_kwargs,
- )
- return outputs
- @add_start_docstrings(
- """
- BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of
- image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to
- the image.
- """,
- BLIP_START_DOCSTRING,
- )
- class BlipForImageTextRetrieval(BlipPreTrainedModel):
- config_class = BlipConfig
- def __init__(self, config: BlipConfig):
- super().__init__(config)
- self.vision_model = BlipVisionModel(config.vision_config)
- self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
- # vision projection layer
- self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size)
- # text projection layer
- self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size)
- # image text matching head
- self.itm_head = nn.Linear(config.text_config.hidden_size, 2)
- self.decoder_pad_token_id = (
- config.text_config.pad_token_id
- if not hasattr(config, "decoder_pad_token_id")
- else config.decoder_pad_token_id
- )
- self.decoder_start_token_id = (
- config.text_config.bos_token_id
- if not hasattr(config, "decoder_start_token_id")
- else config.decoder_start_token_id
- )
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.vision_model.embeddings.patch_embedding
- @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
- def forward(
- self,
- input_ids: torch.LongTensor,
- pixel_values: torch.FloatTensor,
- use_itm_head: Optional[bool] = True,
- attention_mask: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- ) -> Union[Tuple, BlipTextVisionModelOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, BlipForImageTextRetrieval
- >>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
- >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> text = "an image of a cat"
- >>> inputs = processor(images=image, text=text, return_tensors="pt")
- >>> outputs = model(**inputs)
- ```
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- image_embeds = vision_outputs[0]
- image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
- if use_itm_head:
- question_embeds = self.text_encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=image_embeds,
- encoder_attention_mask=image_atts,
- return_dict=return_dict,
- )
- question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
- output = self.itm_head(question_embeds[:, 0, :])
- else:
- question_embeds = self.text_encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- return_dict=return_dict,
- )
- question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
- image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
- text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1)
- output = image_feat @ text_feat.t()
- if not return_dict:
- outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
- return tuple(output for output in outputs if output is not None)
- return BlipImageTextMatchingModelOutput(
- itm_score=output,
- last_hidden_state=vision_outputs.last_hidden_state,
- hidden_states=vision_outputs.hidden_states,
- attentions=vision_outputs.attentions,
- question_embeds=question_embeds,
- )
|