| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953 |
- # coding=utf-8
- # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the BSD-3-clause license (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # https://opensource.org/licenses/BSD-3-Clause
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from typing import List, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import Tensor, device, nn
- from torch.nn import CrossEntropyLoss
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_outputs import (
- BaseModelOutputWithPastAndCrossAttentions,
- BaseModelOutputWithPoolingAndCrossAttentions,
- CausalLMOutputWithCrossAttentions,
- )
- from ...modeling_utils import (
- PreTrainedModel,
- apply_chunking_to_forward,
- find_pruneable_heads_and_indices,
- prune_linear_layer,
- )
- from ...utils import logging
- from .configuration_blip import BlipTextConfig
- logger = logging.get_logger(__name__)
- # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52
- class BlipTextEmbeddings(nn.Module):
- """Construct the embeddings from word and position embeddings."""
- def __init__(self, config):
- super().__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
- self.config = config
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- past_key_values_length: int = 0,
- ) -> torch.Tensor:
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
- if inputs_embeds is None:
- input_ids = input_ids.to(self.word_embeddings.weight.device)
- inputs_embeds = self.word_embeddings(input_ids)
- embeddings = inputs_embeds
- if self.position_embedding_type == "absolute":
- position_embeddings = self.position_embeddings(position_ids)
- embeddings += position_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97
- class BlipTextSelfAttention(nn.Module):
- def __init__(self, config, is_cross_attention):
- super().__init__()
- self.config = config
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- "The hidden size (%d) is not a multiple of the number of attention heads (%d)"
- % (config.hidden_size, config.num_attention_heads)
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- if is_cross_attention:
- self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
- self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
- else:
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- self.max_position_embeddings = config.max_position_embeddings
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
- def save_attn_gradients(self, attn_gradients):
- self.attn_gradients = attn_gradients
- def get_attn_gradients(self):
- return self.attn_gradients
- def save_attention_map(self, attention_map):
- self.attention_map = attention_map
- def get_attention_map(self):
- return self.attention_map
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- mixed_query_layer = self.query(hidden_states)
- # If this is instantiated as a cross-attention module, the keys
- # and values come from an encoder; the attention mask needs to be
- # such that the encoder's padding tokens are not attended to.
- is_cross_attention = encoder_hidden_states is not None
- if is_cross_attention:
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
- attention_mask = encoder_attention_mask
- elif past_key_value is not None:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
- else:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- query_layer = self.transpose_for_scores(mixed_query_layer)
- past_key_value = (key_layer, value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- seq_length = hidden_states.size()[1]
- position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
- position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
- distance = position_ids_l - position_ids_r
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
- if self.position_embedding_type == "relative_key":
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores
- elif self.position_embedding_type == "relative_key_query":
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
- attention_scores = attention_scores + attention_mask.to(attention_scores.device)
- # Normalize the attention scores to probabilities.
- attention_probs = nn.Softmax(dim=-1)(attention_scores)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs_dropped = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs_dropped = attention_probs_dropped * head_mask
- context_layer = torch.matmul(attention_probs_dropped, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(*new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- outputs = outputs + (past_key_value,)
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert -> BlipText
- class BlipTextSelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242
- class BlipTextAttention(nn.Module):
- def __init__(self, config, is_cross_attention=False):
- super().__init__()
- self.self = BlipTextSelfAttention(config, is_cross_attention)
- self.output = BlipTextSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.self.query = prune_linear_layer(self.self.query, index)
- self.self.key = prune_linear_layer(self.self.key, index)
- self.self.value = prune_linear_layer(self.self.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- self_outputs = self.self(
- hidden_states,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert -> BlipText
- class BlipTextIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert -> BlipText
- class BlipTextOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- class BlipTextLayer(nn.Module):
- def __init__(self, config, layer_num):
- super().__init__()
- self.config = config
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = BlipTextAttention(config)
- self.layer_num = layer_num
- if self.config.is_decoder:
- self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder)
- self.intermediate = BlipTextIntermediate(config)
- self.output = BlipTextOutput(config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- self_attention_outputs = self.attention(
- hidden_states,
- attention_mask,
- head_mask,
- output_attentions=output_attentions,
- past_key_value=self_attn_past_key_value,
- )
- attention_output = self_attention_outputs[0]
- outputs = self_attention_outputs[1:-1]
- present_key_value = self_attention_outputs[-1]
- if encoder_hidden_states is not None:
- cross_attention_outputs = self.crossattention(
- attention_output,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- output_attentions=output_attentions,
- )
- attention_output = cross_attention_outputs[0]
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
- layer_output = apply_chunking_to_forward(
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
- )
- outputs = (layer_output,) + outputs
- outputs = outputs + (present_key_value,)
- return outputs
- def feed_forward_chunk(self, attention_output):
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
- # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386
- class BlipTextEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = False,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.is_decoder else None
- next_decoder_cache = () if use_cache else None
- for i in range(self.config.num_hidden_layers):
- layer_module = self.layer[i]
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- past_key_value = past_key_values[i] if past_key_values is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[-1],)
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- next_decoder_cache,
- all_hidden_states,
- all_self_attentions,
- all_cross_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_decoder_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- cross_attentions=all_cross_attentions,
- )
- # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText
- class BlipTextPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BlipText
- class BlipTextPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- if isinstance(config.hidden_act, str):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BlipText
- class BlipTextLMPredictionHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.transform = BlipTextPredictionHeadTransform(config)
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
- self.decoder.bias = self.bias
- def _tie_weights(self):
- self.decoder.bias = self.bias
- def forward(self, hidden_states):
- hidden_states = self.transform(hidden_states)
- hidden_states = self.decoder(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BlipText
- class BlipTextOnlyMLMHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = BlipTextLMPredictionHead(config)
- def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
- prediction_scores = self.predictions(sequence_output)
- return prediction_scores
- # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548
- class BlipTextPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = BlipTextConfig
- base_model_prefix = "bert"
- _no_split_modules = []
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Embedding)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- if isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
- # Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
- class BlipTextModel(BlipTextPreTrainedModel):
- """
- The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
- cross-attention is added between the self-attention layers, following the architecture described in [Attention is
- all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
- Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
- `encoder_hidden_states` is then expected as an input to the forward pass.
- """
- def __init__(self, config, add_pooling_layer=True):
- super().__init__(config)
- self.config = config
- self.embeddings = BlipTextEmbeddings(config)
- self.encoder = BlipTextEncoder(config)
- self.pooler = BlipTextPooler(config) if add_pooling_layer else None
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- def get_extended_attention_mask(
- self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
- ) -> Tensor:
- """
- Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
- Arguments:
- attention_mask (`torch.Tensor`):
- Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
- input_shape (`Tuple[int]`):
- The shape of the input to the model.
- device (`torch.device`):
- The device of the input to the model.
- Returns:
- `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
- """
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
- # ourselves in which case we just need to make it broadcastable to all heads.
- if attention_mask.dim() == 3:
- extended_attention_mask = attention_mask[:, None, :, :]
- elif attention_mask.dim() == 2:
- # Provided a padding mask of dimensions [batch_size, seq_length]
- # - if the model is a decoder, apply a causal mask in addition to the padding mask
- # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
- if is_decoder:
- batch_size, seq_length = input_shape
- seq_ids = torch.arange(seq_length, device=device)
- causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
- # in case past_key_values are used we need to add a prefix ones mask to the causal mask
- # causal and attention masks must have same type with pytorch version < 1.3
- causal_mask = causal_mask.to(attention_mask.dtype)
- if causal_mask.shape[1] < attention_mask.shape[1]:
- prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
- causal_mask = torch.cat(
- [
- torch.ones(
- (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
- ),
- causal_mask,
- ],
- axis=-1,
- )
- extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
- else:
- extended_attention_mask = attention_mask[:, None, None, :]
- else:
- raise ValueError(
- "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
- input_shape, attention_mask.shape
- )
- )
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and -10000.0 for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
- return extended_attention_mask
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- encoder_embeds: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- is_decoder: Optional[bool] = False,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
- r"""
- encoder_hidden_states (`torch.FloatTensor`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
- the model is configured as a decoder.
- encoder_attention_mask (`torch.FloatTensor`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if is_decoder:
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- else:
- use_cache = False
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- batch_size, seq_length = input_shape
- device = input_ids.device
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- batch_size, seq_length = input_shape
- device = inputs_embeds.device
- elif encoder_embeds is not None:
- input_shape = encoder_embeds.size()[:-1]
- batch_size, seq_length = input_shape
- device = encoder_embeds.device
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
- # past_key_values_length
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
- if attention_mask is None:
- attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length))).to(device)
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
- # ourselves in which case we just need to make it broadcastable to all heads.
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
- attention_mask, input_shape, device, is_decoder
- )
- # If a 2D or 3D attention mask is provided for the cross-attention
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
- if encoder_hidden_states is not None:
- if isinstance(encoder_hidden_states, list):
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
- else:
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
- if isinstance(encoder_attention_mask, list):
- encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
- elif encoder_attention_mask is None:
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
- else:
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
- else:
- encoder_extended_attention_mask = None
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- if encoder_embeds is None:
- embedding_output = self.embeddings(
- input_ids=input_ids,
- position_ids=position_ids,
- inputs_embeds=inputs_embeds,
- past_key_values_length=past_key_values_length,
- )
- else:
- embedding_output = encoder_embeds
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_extended_attention_mask,
- past_key_values=past_key_values,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndCrossAttentions(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- past_key_values=encoder_outputs.past_key_values,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- cross_attentions=encoder_outputs.cross_attentions,
- )
- # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811
- class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin):
- def __init__(self, config):
- super().__init__(config)
- self.bert = BlipTextModel(config, add_pooling_layer=False)
- self.cls = BlipTextOnlyMLMHead(config)
- self.label_smoothing = config.label_smoothing
- def get_output_embeddings(self):
- return self.cls.predictions.decoder
- def set_output_embeddings(self, new_embeddings):
- self.cls.predictions.decoder = new_embeddings
- self.cls.predictions.bias = new_embeddings.bias
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.Tensor]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- return_logits: Optional[bool] = False,
- is_decoder: Optional[bool] = True,
- reduction: Optional[str] = "mean",
- ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
- r"""
- encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of
- hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
- configured as a decoder.
- encoder_attention_mask (`torch.FloatTensor`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- labels (`torch.LongTensor`, *optional*):
- Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
- `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
- ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if labels is not None:
- use_cache = False
- outputs = self.bert(
- input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- past_key_values=past_key_values,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- is_decoder=is_decoder,
- )
- sequence_output = outputs[0]
- prediction_scores = self.cls(sequence_output)
- if return_logits:
- return prediction_scores[:, :-1, :].contiguous()
- lm_loss = None
- if labels is not None:
- # we are doing next-token prediction; shift prediction scores and input ids by one
- shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
- labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device)
- loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=self.label_smoothing)
- lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- if reduction == "none":
- lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
- if not return_dict:
- output = (prediction_scores,) + outputs[2:]
- return ((lm_loss,) + output) if lm_loss is not None else output
- return CausalLMOutputWithCrossAttentions(
- loss=lm_loss,
- logits=prediction_scores,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- cross_attentions=outputs.cross_attentions,
- )
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
- # Overwrite -- hardcoded key return (`is_decoder=True`)
- input_shape = input_ids.shape
- # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
- if attention_mask is None:
- attention_mask = input_ids.new_ones(input_shape)
- # cut decoder_input_ids if past_key_values is used
- if past_key_values is not None:
- past_length = past_key_values[0][0].shape[2]
- # Some generation methods already pass only the last input ID
- if input_ids.shape[1] > past_length:
- remove_prefix_length = past_length
- else:
- # Default to old behavior: keep only final ID
- remove_prefix_length = input_ids.shape[1] - 1
- input_ids = input_ids[:, remove_prefix_length:]
- return {
- "input_ids": input_ids,
- "attention_mask": attention_mask,
- "past_key_values": past_key_values,
- "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
- "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
- "is_decoder": True,
- }
- def _reorder_cache(self, past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- reordered_past += (
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
- )
- return reordered_past
|