| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for Blip.
- """
- from typing import List, Optional, Union
- from ...image_utils import ImageInput
- from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
- from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
- class BlipProcessorKwargs(ProcessingKwargs, total=False):
- _defaults = {
- "text_kwargs": {
- "add_special_tokens": True,
- "padding": False,
- "stride": 0,
- "return_overflowing_tokens": False,
- "return_special_tokens_mask": False,
- "return_offsets_mapping": False,
- "return_token_type_ids": False,
- "return_length": False,
- "verbose": True,
- },
- "images_kwargs": {},
- }
- class BlipProcessor(ProcessorMixin):
- r"""
- Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor.
- [`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the
- docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
- Args:
- image_processor (`BlipImageProcessor`):
- An instance of [`BlipImageProcessor`]. The image processor is a required input.
- tokenizer (`BertTokenizerFast`):
- An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- valid_kwargs = []
- image_processor_class = "BlipImageProcessor"
- tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
- def __init__(self, image_processor, tokenizer, **kwargs):
- tokenizer.return_token_type_ids = False
- super().__init__(image_processor, tokenizer)
- self.current_processor = self.image_processor
- def __call__(
- self,
- images: ImageInput = None,
- text: Optional[Union[str, List[str], TextInput, PreTokenizedInput]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[BlipProcessorKwargs],
- ) -> BatchEncoding:
- """
- This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
- [`BertTokenizerFast.__call__`] to prepare text for the model.
- Please refer to the docstring of the above two methods for more information.
- Args:
- images (`ImageInput`):
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
- tensor. Both channels-first and channels-last formats are supported.
- text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors of a particular framework. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return NumPy `np.ndarray` objects.
- - `'jax'`: Return JAX `jnp.ndarray` objects.
- """
- if images is None and text is None:
- raise ValueError("You have to specify either images or text.")
- text_encoding = None
- # add pixel_values encoding. If we also have text_encoding, update image encoding and return it.
- # else, return the text encoding.
- output_kwargs = self._merge_kwargs(
- BlipProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- if text is not None:
- text_encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
- if images is not None:
- encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
- if text_encoding is not None:
- encoding_image_processor.update(text_encoding)
- return encoding_image_processor
- return text_encoding
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|