| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for Bloom."""
- import pickle
- from typing import Optional, Tuple
- from ...tokenization_utils_base import BatchEncoding
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
- class BloomTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
- Byte-Pair-Encoding.
- This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
- be encoded differently whether it is at the beginning of the sentence (without space) or not:
- ```python
- >>> from transformers import BloomTokenizerFast
- >>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom")
- >>> tokenizer("Hello world")["input_ids"]
- [59414, 8876]
- >>> tokenizer(" Hello world")["input_ids"]
- [86153, 8876]
- ```
- You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
- the model was not pretrained this way, it might yield a decrease in performance.
- <Tip>
- When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
- </Tip>
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- errors (`str`, *optional*, defaults to `"replace"`):
- Paradigm to follow when decoding bytes to UTF-8. See
- [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
- unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
- The beginning of sequence token.
- eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
- The end of sequence token.
- add_prefix_space (`bool`, *optional*, defaults to `False`):
- Whether or not to add an initial space to the input. This allows to treat the leading word just as any
- other word. (Bloom tokenizer detect beginning of words by the preceding space).
- trim_offsets (`bool`, *optional*, defaults to `True`):
- Whether or not the post-processing step should trim offsets to avoid including whitespaces.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- slow_tokenizer_class = None
- # No `max_model_input_sizes` as BLOOM uses ALiBi positional embeddings
- def __init__(
- self,
- vocab_file=None,
- merges_file=None,
- tokenizer_file=None,
- unk_token="<unk>",
- bos_token="<s>",
- eos_token="</s>",
- pad_token="<pad>",
- add_prefix_space=False,
- clean_up_tokenization_spaces=False,
- **kwargs,
- ):
- super().__init__(
- vocab_file=vocab_file,
- merges_file=merges_file,
- tokenizer_file=tokenizer_file,
- unk_token=unk_token,
- bos_token=bos_token,
- eos_token=eos_token,
- pad_token=pad_token,
- add_prefix_space=add_prefix_space,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- **kwargs,
- )
- # TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly
- # check this as they were green before.
- pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer)
- decoder_state = pickle.dumps(self.backend_tokenizer.decoder)
- if add_prefix_space:
- pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
- decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
- self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state)
- self.backend_tokenizer.decoder = pickle.loads(decoder_state)
- self.add_prefix_space = add_prefix_space
- def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- if not (self.add_prefix_space or not is_split_into_words):
- raise Exception(
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
- " pretokenized inputs."
- )
- return super()._batch_encode_plus(*args, **kwargs)
- def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- if not (self.add_prefix_space or not is_split_into_words):
- raise Exception(
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
- " pretokenized inputs."
- )
- return super()._encode_plus(*args, **kwargs)
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(save_directory, name=filename_prefix)
- return tuple(files)
|