| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540 |
- # coding=utf-8
- # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for BridgeTower."""
- from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import PaddingMode, center_crop, pad, resize, to_channel_dimension_format
- from ...image_utils import (
- OPENAI_CLIP_MEAN,
- OPENAI_CLIP_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- get_image_size,
- infer_channel_dimension_format,
- is_batched,
- is_scaled_image,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
- if is_vision_available():
- import PIL
- logger = logging.get_logger(__name__)
- # Copied from transformers.models.vilt.image_processing_vilt.max_across_indices
- def max_across_indices(values: Iterable[Any]) -> List[Any]:
- """
- Return the maximum value across all indices of an iterable of values.
- """
- return [max(values_i) for values_i in zip(*values)]
- # Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask
- def make_pixel_mask(
- image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
- ) -> np.ndarray:
- """
- Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
- Args:
- image (`np.ndarray`):
- Image to make the pixel mask for.
- output_size (`Tuple[int, int]`):
- Output size of the mask.
- """
- input_height, input_width = get_image_size(image, channel_dim=input_data_format)
- mask = np.zeros(output_size, dtype=np.int64)
- mask[:input_height, :input_width] = 1
- return mask
- # Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width
- def get_max_height_width(
- images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
- ) -> List[int]:
- """
- Get the maximum height and width across all images in a batch.
- """
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(images[0])
- if input_data_format == ChannelDimension.FIRST:
- _, max_height, max_width = max_across_indices([img.shape for img in images])
- elif input_data_format == ChannelDimension.LAST:
- max_height, max_width, _ = max_across_indices([img.shape for img in images])
- else:
- raise ValueError(f"Invalid channel dimension format: {input_data_format}")
- return (max_height, max_width)
- # Copied from transformers.models.vilt.image_processing_vilt.get_resize_output_image_size
- def get_resize_output_image_size(
- input_image: np.ndarray,
- shorter: int = 800,
- longer: int = 1333,
- size_divisor: int = 32,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> Tuple[int, int]:
- input_height, input_width = get_image_size(input_image, input_data_format)
- min_size, max_size = shorter, longer
- scale = min_size / min(input_height, input_width)
- if input_height < input_width:
- new_height = min_size
- new_width = scale * input_width
- else:
- new_height = scale * input_height
- new_width = min_size
- if max(new_height, new_width) > max_size:
- scale = max_size / max(new_height, new_width)
- new_height = scale * new_height
- new_width = scale * new_width
- new_height, new_width = int(new_height + 0.5), int(new_width + 0.5)
- new_height = new_height // size_divisor * size_divisor
- new_width = new_width // size_divisor * size_divisor
- return new_height, new_width
- class BridgeTowerImageProcessor(BaseImageProcessor):
- r"""
- Constructs a BridgeTower image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
- `do_resize` parameter in the `preprocess` method.
- size (`Dict[str, int]` *optional*, defaults to `{'shortest_edge': 288}`):
- Resize the shorter side of the input to `size["shortest_edge"]`. The longer side will be limited to under
- `int((1333 / 800) * size["shortest_edge"])` while preserving the aspect ratio. Only has an effect if
- `do_resize` is set to `True`. Can be overridden by the `size` parameter in the `preprocess` method.
- size_divisor (`int`, *optional*, defaults to 32):
- The size by which to make sure both the height and width can be divided. Only has an effect if `do_resize`
- is set to `True`. Can be overridden by the `size_divisor` parameter in the `preprocess` method.
- resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
- Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
- overridden by the `resample` parameter in the `preprocess` method.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
- parameter in the `preprocess` method.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
- overridden by the `rescale_factor` parameter in the `preprocess` method.
- do_normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
- method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
- image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
- overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
- Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
- number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
- Can be overridden by the `image_std` parameter in the `preprocess` method.
- do_center_crop (`bool`, *optional*, defaults to `True`):
- Whether to center crop the image. Can be overridden by the `do_center_crop` parameter in the `preprocess`
- method.
- crop_size (`Dict[str, int]`, *optional*):
- Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
- Can be overridden by the `crop_size` parameter in the `preprocess` method. If unset defaults to `size`,
- do_pad (`bool`, *optional*, defaults to `True`):
- Whether to pad the image to the `(max_height, max_width)` of the images in the batch. Can be overridden by
- the `do_pad` parameter in the `preprocess` method.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- size_divisor: int = 32,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- do_rescale: bool = True,
- rescale_factor: Union[int, float] = 1 / 255,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_center_crop: bool = True,
- crop_size: Dict[str, int] = None,
- do_pad: bool = True,
- **kwargs,
- ) -> None:
- if "pad_and_return_pixel_mask" in kwargs:
- do_pad = kwargs.pop("pad_and_return_pixel_mask")
- super().__init__(**kwargs)
- size = size if size is not None else {"shortest_edge": 288}
- size = get_size_dict(size, default_to_square=False)
- self.do_resize = do_resize
- self.size = size
- self.size_divisor = size_divisor
- self.resample = resample
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
- self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
- self.do_pad = do_pad
- self.do_center_crop = do_center_crop
- self.crop_size = crop_size
- # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.resize
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- size_divisor: int = 32,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image.
- Resizes the shorter side of the image to `size["shortest_edge"]` while preserving the aspect ratio. If the
- longer side is larger than the max size `(int(`size["shortest_edge"]` * 1333 / 800))`, the longer side is then
- resized to the max size while preserving the aspect ratio.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Controls the size of the output image. Should be of the form `{"shortest_edge": int}`.
- size_divisor (`int`, *optional*, defaults to 32):
- The image is resized to a size that is a multiple of this value.
- resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Resampling filter to use when resiizing the image.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- size = get_size_dict(size, default_to_square=False)
- if "shortest_edge" not in size:
- raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}")
- shorter = size["shortest_edge"]
- longer = int(1333 / 800 * shorter)
- output_size = get_resize_output_image_size(
- image, shorter=shorter, longer=longer, size_divisor=size_divisor, input_data_format=input_data_format
- )
- return resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- def center_crop(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
- any edge, the image is padded with 0's and then center cropped.
- Args:
- image (`np.ndarray`):
- Image to center crop.
- size (`Dict[str, int]`):
- Size of the output image in the form `{"height": h, "width": w}`.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred from the input
- image.
- """
- output_size = size["shortest_edge"]
- return center_crop(
- image,
- size=(output_size, output_size),
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image
- def _pad_image(
- self,
- image: np.ndarray,
- output_size: Tuple[int, int],
- constant_values: Union[float, Iterable[float]] = 0,
- data_format: Optional[ChannelDimension] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Pad an image with zeros to the given size.
- """
- input_height, input_width = get_image_size(image, channel_dim=input_data_format)
- output_height, output_width = output_size
- pad_bottom = output_height - input_height
- pad_right = output_width - input_width
- padding = ((0, pad_bottom), (0, pad_right))
- padded_image = pad(
- image,
- padding,
- mode=PaddingMode.CONSTANT,
- constant_values=constant_values,
- data_format=data_format,
- input_data_format=input_data_format,
- )
- return padded_image
- # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad
- def pad(
- self,
- images: List[np.ndarray],
- constant_values: Union[float, Iterable[float]] = 0,
- return_pixel_mask: bool = True,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: Optional[ChannelDimension] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> BatchFeature:
- """
- Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
- in the batch and optionally returns their corresponding pixel mask.
- Args:
- image (`np.ndarray`):
- Image to pad.
- constant_values (`float` or `Iterable[float]`, *optional*):
- The value to use for the padding if `mode` is `"constant"`.
- return_pixel_mask (`bool`, *optional*, defaults to `True`):
- Whether to return a pixel mask.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- pad_size = get_max_height_width(images, input_data_format=input_data_format)
- padded_images = [
- self._pad_image(
- image,
- pad_size,
- constant_values=constant_values,
- data_format=data_format,
- input_data_format=input_data_format,
- )
- for image in images
- ]
- data = {"pixel_values": padded_images}
- if return_pixel_mask:
- masks = [
- make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
- for image in images
- ]
- data["pixel_mask"] = masks
- return BatchFeature(data=data, tensor_type=return_tensors)
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_resize: Optional[bool] = None,
- size: Optional[Dict[str, int]] = None,
- size_divisor: Optional[int] = None,
- resample: PILImageResampling = None,
- do_rescale: Optional[bool] = None,
- rescale_factor: Optional[float] = None,
- do_normalize: Optional[bool] = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_pad: Optional[bool] = None,
- do_center_crop: Optional[bool] = None,
- crop_size: Dict[str, int] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Controls the size of the image after `resize`. The shortest edge of the image is resized to
- `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
- is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
- edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
- size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
- The image is resized to a size that is a multiple of this value.
- resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image values between [0 - 1].
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean to normalize the image by if `do_normalize` is set to `True`.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
- do_pad (`bool`, *optional*, defaults to `self.do_pad`):
- Whether to pad the image to the (max_height, max_width) in the batch. If `True`, a pixel mask is also
- created and returned.
- do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
- Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the
- image is padded with 0's and then center cropped.
- crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
- Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
- padded with zeros and then cropped
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - Unset: Use the channel dimension format of the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size_divisor = size_divisor if size_divisor is not None else self.size_divisor
- resample = resample if resample is not None else self.resample
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- do_pad = do_pad if do_pad is not None else self.do_pad
- do_center_crop if do_center_crop is not None else self.do_center_crop
- # For backwards compatibility. Initial version of this processor was cropping to the "size" argument, which
- # it should default to if crop_size is undefined.
- crop_size = (
- crop_size if crop_size is not None else (self.crop_size if self.crop_size is not None else self.size)
- )
- size = size if size is not None else self.size
- size = get_size_dict(size, default_to_square=False)
- if not is_batched(images):
- images = [images]
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- # Here, crop_size is used only if it is set, else size will be used.
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_pad=do_pad,
- size_divisibility=size_divisor,
- do_center_crop=do_center_crop,
- crop_size=crop_size,
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if is_scaled_image(images[0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if do_resize:
- images = [
- self.resize(
- image=image,
- size=size,
- size_divisor=size_divisor,
- resample=resample,
- input_data_format=input_data_format,
- )
- for image in images
- ]
- if do_center_crop:
- images = [
- self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
- ]
- if do_rescale:
- images = [
- self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- for image in images
- ]
- if do_normalize:
- images = [
- self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
- for image in images
- ]
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
- ]
- if do_pad:
- encoded_outputs = self.pad(
- images, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=data_format
- )
- else:
- encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
- return encoded_outputs
|