| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- # coding=utf-8
- # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for BridgeTower.
- """
- from typing import List, Union
- from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
- from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
- class BridgeTowerProcessorKwargs(ProcessingKwargs, total=False):
- _defaults = {
- "text_kwargs": {
- "add_special_tokens": True,
- "padding": False,
- "stride": 0,
- "return_overflowing_tokens": False,
- "return_special_tokens_mask": False,
- "return_offsets_mapping": False,
- "return_length": False,
- "verbose": True,
- },
- "images_kwargs": {
- "do_normalize": True,
- "do_center_crop": True,
- },
- }
- class BridgeTowerProcessor(ProcessorMixin):
- r"""
- Constructs a BridgeTower processor which wraps a Roberta tokenizer and BridgeTower image processor into a single
- processor.
- [`BridgeTowerProcessor`] offers all the functionalities of [`BridgeTowerImageProcessor`] and
- [`RobertaTokenizerFast`]. See the docstring of [`~BridgeTowerProcessor.__call__`] and
- [`~BridgeTowerProcessor.decode`] for more information.
- Args:
- image_processor (`BridgeTowerImageProcessor`):
- An instance of [`BridgeTowerImageProcessor`]. The image processor is a required input.
- tokenizer (`RobertaTokenizerFast`):
- An instance of ['RobertaTokenizerFast`]. The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "BridgeTowerImageProcessor"
- tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
- def __init__(self, image_processor, tokenizer):
- super().__init__(image_processor, tokenizer)
- def __call__(
- self,
- images,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[BridgeTowerProcessorKwargs],
- ) -> BatchEncoding:
- """
- This method uses [`BridgeTowerImageProcessor.__call__`] method to prepare image(s) for the model, and
- [`RobertaTokenizerFast.__call__`] to prepare text for the model.
- Please refer to the docstring of the above two methods for more information.
- """
- output_kwargs = self._merge_kwargs(
- BridgeTowerProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
- # add pixel_values + pixel_mask
- encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
- encoding.update(encoding_image_processor)
- return encoding
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
- to the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|