| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303 |
- # coding=utf-8
- # Copyright 2023 The LAION-AI Team and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch CLAP model."""
- import collections
- import math
- from dataclasses import dataclass
- from typing import Any, List, Optional, Tuple, Union
- import torch
- import torch.nn.functional as F
- from torch import nn
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutputWithPastAndCrossAttentions,
- BaseModelOutputWithPooling,
- BaseModelOutputWithPoolingAndCrossAttentions,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
- from ...utils import (
- ModelOutput,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- torch_int,
- )
- from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused"
- # Adapted from: https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/utils.py#L191
- def interpolate(hidden_states, ratio):
- """
- Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN.
- Args:
- hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)):
- Input hidden states
- ratio (`int`):
- The ratio of the length of the output to the length of the input.
- """
- (batch_size, time_length, classes_num) = hidden_states.shape
- upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1)
- upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num)
- return upsampled
- # Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L249
- def window_partition(hidden_states, window_size):
- """
- Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size,
- num_channels)`
- Args:
- hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`):
- Input hidden states
- window_size (`int`):
- Window size
- """
- batch_size, height, width, num_channels = hidden_states.shape
- hidden_states = hidden_states.view(
- batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
- )
- windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
- return windows
- # Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L263
- def window_reverse(windows, window_size, height, width):
- """
- Merges windows to produce higher resolution features.
- Args:
- windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`):
- Input windows
- window_size (`int`):
- Window size
- height (`int`):
- Height of the resized audio
- width (`int`):
- Width of the resized audio
- """
- num_channels = windows.shape[-1]
- windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
- windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
- return windows
- # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
- def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
- """
- Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
- are ignored. This is modified from fairseq's `utils.make_positions`.
- Args:
- x: torch.Tensor x:
- Returns: torch.Tensor
- """
- # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
- mask = input_ids.ne(padding_idx).int()
- incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
- return incremental_indices.long() + padding_idx
- # contrastive loss function, adapted from
- # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html#CLIP-loss-function
- def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
- labels = torch.arange(len(logits), device=logits.device)
- return nn.functional.cross_entropy(logits, labels)
- @dataclass
- # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap
- class ClapTextModelOutput(ModelOutput):
- """
- Base class for text model's outputs that also contains a pooling of the last hidden states.
- Args:
- text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
- The text embeddings obtained by applying the projection layer to the pooler_output.
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- text_embeds: Optional[torch.FloatTensor] = None
- last_hidden_state: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- @dataclass
- class ClapAudioModelOutput(ModelOutput):
- """
- ClapAudio model output to mimic the output of the original implementation.
- Args:
- audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
- The Audio embeddings obtained by applying the projection layer to the pooler_output.
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
- """
- audio_embeds: Optional[torch.FloatTensor] = None
- last_hidden_state: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- @dataclass
- # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio
- class ClapOutput(ModelOutput):
- """
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
- Contrastive loss for audio-text similarity.
- logits_per_audio (`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`):
- The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text
- similarity scores.
- logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`):
- The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio
- similarity scores.
- text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`].
- audio_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`].
- text_model_output (`BaseModelOutputWithPooling`):
- The output of the [`ClapTextModel`].
- audio_model_output (`BaseModelOutputWithPooling`):
- The output of the [`ClapAudioModel`].
- """
- loss: Optional[torch.FloatTensor] = None
- logits_per_audio: torch.FloatTensor = None
- logits_per_text: torch.FloatTensor = None
- text_embeds: torch.FloatTensor = None
- audio_embeds: torch.FloatTensor = None
- text_model_output: BaseModelOutputWithPooling = None
- audio_model_output: BaseModelOutputWithPooling = None
- def to_tuple(self) -> Tuple[Any]:
- return tuple(
- self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple()
- for k in self.keys()
- )
- # Adapted from transformers.models.swin.modeling_swin.SwinDropPath
- class ClapDropPath(nn.Module):
- """
- Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly
- refactored version of the `SwinDropPath` implementation.
- """
- def __init__(self, drop_prob=None):
- super().__init__()
- self.drop_prob = drop_prob
- def forward(self, hidden_states):
- if self.drop_prob == 0.0 or not self.training:
- return hidden_states
- keep_prob = 1 - self.drop_prob
- # work with diff dim tensors, not just 2D ConvNets
- shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1)
- random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device)
- random_tensor.floor_() # binarize
- output = hidden_states.div(keep_prob) * random_tensor
- return output
- # Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/feature_fusion.py#L133
- class ClapAudioAFFBlock(nn.Module):
- r"""
- ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement
- the 1D version.
- """
- def __init__(self, config: ClapAudioConfig):
- super().__init__()
- channels = config.patch_embeds_hidden_size
- downsize_ratio = config.aff_block_r
- inter_channels = int(channels // downsize_ratio)
- self.local_att = nn.Sequential(
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
- nn.BatchNorm2d(inter_channels),
- nn.ReLU(inplace=True),
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
- nn.BatchNorm2d(channels),
- )
- self.global_att = nn.Sequential(
- nn.AdaptiveAvgPool2d(1),
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
- nn.BatchNorm2d(inter_channels),
- nn.ReLU(inplace=True),
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
- nn.BatchNorm2d(channels),
- )
- self.sigmoid = nn.Sigmoid()
- def forward(self, hidden_states, residual):
- attention_input = hidden_states + residual
- fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input)
- fused_layer_output = self.sigmoid(fused_layer_output)
- output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output)
- return output
- class ClapAudioPatchEmbed(nn.Module):
- """
- This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the
- Transformer block.
- """
- def __init__(self, config: ClapAudioConfig):
- super().__init__()
- img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size
- patch_size = (
- (config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size
- )
- patch_stride = (
- (config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride
- )
- self.img_size = img_size
- self.patch_stride = patch_stride
- self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
- self.num_patches = self.grid_size[0] * self.grid_size[1]
- self.flatten = config.flatten_patch_embeds
- self.enable_fusion = config.enable_fusion
- padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
- scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1
- self.proj = nn.Conv2d(
- config.patch_embed_input_channels * scale_factor,
- config.patch_embeds_hidden_size,
- kernel_size=patch_size,
- stride=patch_stride,
- padding=padding,
- )
- self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity()
- if self.enable_fusion:
- self.fusion_model = ClapAudioAFFBlock(config)
- self.mel_conv2d = nn.Conv2d(
- config.patch_embed_input_channels,
- config.patch_embeds_hidden_size,
- kernel_size=(patch_size[0], patch_size[1] * 3),
- stride=(patch_stride[0], patch_stride[1] * 3),
- padding=padding,
- )
- def forward(self, hidden_states, is_longer_idx=None):
- if self.enable_fusion:
- # retrieve the last mel as we have transposed the input
- global_hidden_states = hidden_states[:, 0:1, :, :]
- # global processing
- batch_size, num_channels, height, width = global_hidden_states.shape
- if height != self.img_size[0] or width != self.img_size[1]:
- raise ValueError(
- f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
- )
- global_hidden_states = self.proj(global_hidden_states)
- output_width = global_hidden_states.size(-1)
- if len(is_longer_idx) > 0:
- # local processing
- local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous()
- batch_size, num_channels, height, width = local_hidden_states.shape
- local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width)
- local_hidden_states = self.mel_conv2d(local_hidden_states)
- _, features, height, width = local_hidden_states.shape
- local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width)
- local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3)
- local_width = local_hidden_states.size(-1)
- local_hidden_states = torch.nn.functional.pad(
- local_hidden_states, (0, output_width - local_width), "constant", 0
- )
- global_hidden_states[is_longer_idx] = self.fusion_model(
- global_hidden_states[is_longer_idx], local_hidden_states
- )
- hidden_states = global_hidden_states
- else:
- _, _, height, width = hidden_states.shape
- if height != self.img_size[0] or width != self.img_size[1]:
- raise ValueError(
- f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
- )
- hidden_states = self.proj(hidden_states)
- if self.flatten:
- hidden_states = hidden_states.flatten(2).transpose(1, 2)
- hidden_states = self.norm(hidden_states)
- return hidden_states
- # Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->ClapAudio
- class ClapAudioSelfAttention(nn.Module):
- def __init__(self, config, dim, num_heads, window_size):
- super().__init__()
- if dim % num_heads != 0:
- raise ValueError(
- f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
- )
- self.num_attention_heads = num_heads
- self.attention_head_size = int(dim / num_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.window_size = (
- window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
- )
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
- )
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
- coords_flatten = torch.flatten(coords, 1)
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
- relative_coords = relative_coords.permute(1, 2, 0).contiguous()
- relative_coords[:, :, 0] += self.window_size[0] - 1
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1)
- self.register_buffer("relative_position_index", relative_position_index)
- self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
- self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
- self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- batch_size, dim, num_channels = hidden_states.shape
- mixed_query_layer = self.query(hidden_states)
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- query_layer = self.transpose_for_scores(mixed_query_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
- relative_position_bias = relative_position_bias.view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
- )
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
- attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function)
- mask_shape = attention_mask.shape[0]
- attention_scores = attention_scores.view(
- batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
- )
- attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
- attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- return outputs
- # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->ClapAudio
- class ClapAudioSelfOutput(nn.Module):
- def __init__(self, config, dim):
- super().__init__()
- self.dense = nn.Linear(dim, dim)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
- # Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->ClapAudio
- class ClapAudioAttention(nn.Module):
- def __init__(self, config, dim, num_heads, window_size):
- super().__init__()
- self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size)
- self.output = ClapAudioSelfOutput(config, dim)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.self.query = prune_linear_layer(self.self.query, index)
- self.self.key = prune_linear_layer(self.self.key, index)
- self.self.value = prune_linear_layer(self.self.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->ClapAudio
- class ClapAudioIntermediate(nn.Module):
- def __init__(self, config, dim):
- super().__init__()
- self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->ClapAudio
- class ClapAudioOutput(nn.Module):
- def __init__(self, config, dim):
- super().__init__()
- self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
- # Copied from transformers.models.swin.modeling_swin.SwinLayer with SwinDropPath->ClapDropPath, Swin->ClapAudio
- class ClapAudioLayer(nn.Module):
- def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.shift_size = shift_size
- self.window_size = config.window_size
- self.input_resolution = input_resolution
- self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
- self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size)
- self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
- self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
- self.intermediate = ClapAudioIntermediate(config, dim)
- self.output = ClapAudioOutput(config, dim)
- def set_shift_and_window_size(self, input_resolution):
- if min(input_resolution) <= self.window_size:
- # if window size is larger than input resolution, we don't partition windows
- self.shift_size = torch_int(0)
- self.window_size = (
- torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution)
- )
- def get_attn_mask(self, height, width, dtype, device):
- if self.shift_size > 0:
- # calculate attention mask for SW-MSA
- img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device)
- height_slices = (
- slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None),
- )
- width_slices = (
- slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None),
- )
- count = 0
- for height_slice in height_slices:
- for width_slice in width_slices:
- img_mask[:, height_slice, width_slice, :] = count
- count += 1
- mask_windows = window_partition(img_mask, self.window_size)
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- else:
- attn_mask = None
- return attn_mask
- def maybe_pad(self, hidden_states, height, width):
- pad_right = (self.window_size - width % self.window_size) % self.window_size
- pad_bottom = (self.window_size - height % self.window_size) % self.window_size
- pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
- hidden_states = nn.functional.pad(hidden_states, pad_values)
- return hidden_states, pad_values
- def forward(
- self,
- hidden_states: torch.Tensor,
- input_dimensions: Tuple[int, int],
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = False,
- always_partition: Optional[bool] = False,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- if not always_partition:
- self.set_shift_and_window_size(input_dimensions)
- else:
- pass
- height, width = input_dimensions
- batch_size, _, channels = hidden_states.size()
- shortcut = hidden_states
- hidden_states = self.layernorm_before(hidden_states)
- hidden_states = hidden_states.view(batch_size, height, width, channels)
- # pad hidden_states to multiples of window size
- hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
- _, height_pad, width_pad, _ = hidden_states.shape
- # cyclic shift
- if self.shift_size > 0:
- shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
- else:
- shifted_hidden_states = hidden_states
- # partition windows
- hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
- hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
- attn_mask = self.get_attn_mask(
- height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device
- )
- attention_outputs = self.attention(
- hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
- )
- attention_output = attention_outputs[0]
- attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
- shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
- # reverse cyclic shift
- if self.shift_size > 0:
- attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
- else:
- attention_windows = shifted_windows
- was_padded = pad_values[3] > 0 or pad_values[5] > 0
- if was_padded:
- attention_windows = attention_windows[:, :height, :width, :].contiguous()
- attention_windows = attention_windows.view(batch_size, height * width, channels)
- hidden_states = shortcut + self.drop_path(attention_windows)
- layer_output = self.layernorm_after(hidden_states)
- layer_output = self.intermediate(layer_output)
- layer_output = hidden_states + self.output(layer_output)
- layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
- return layer_outputs
- # Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->ClapAudio
- class ClapAudioStage(nn.Module):
- def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
- super().__init__()
- self.config = config
- self.dim = dim
- self.blocks = nn.ModuleList(
- [
- ClapAudioLayer(
- config=config,
- dim=dim,
- input_resolution=input_resolution,
- num_heads=num_heads,
- shift_size=0 if (i % 2 == 0) else config.window_size // 2,
- )
- for i in range(depth)
- ]
- )
- # patch merging layer
- if downsample is not None:
- self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
- else:
- self.downsample = None
- self.pointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- input_dimensions: Tuple[int, int],
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = False,
- always_partition: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- height, width = input_dimensions
- for i, layer_module in enumerate(self.blocks):
- layer_head_mask = head_mask[i] if head_mask is not None else None
- layer_outputs = layer_module(
- hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
- )
- hidden_states = layer_outputs[0]
- hidden_states_before_downsampling = hidden_states
- if self.downsample is not None:
- height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
- output_dimensions = (height, width, height_downsampled, width_downsampled)
- hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
- else:
- output_dimensions = (height, width, height, width)
- stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
- if output_attentions:
- stage_outputs += layer_outputs[1:]
- return stage_outputs
- # Copied from transformers.models.swin.modeling_swin.SwinPatchMerging with Swin->ClapAudio
- class ClapAudioPatchMerging(nn.Module):
- """
- Patch Merging Layer.
- Args:
- input_resolution (`Tuple[int]`):
- Resolution of input feature.
- dim (`int`):
- Number of input channels.
- norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
- Normalization layer class.
- """
- def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
- super().__init__()
- self.input_resolution = input_resolution
- self.dim = dim
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
- self.norm = norm_layer(4 * dim)
- def maybe_pad(self, input_feature, height, width):
- should_pad = (height % 2 == 1) or (width % 2 == 1)
- if should_pad:
- pad_values = (0, 0, 0, width % 2, 0, height % 2)
- input_feature = nn.functional.pad(input_feature, pad_values)
- return input_feature
- def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
- height, width = input_dimensions
- # `dim` is height * width
- batch_size, dim, num_channels = input_feature.shape
- input_feature = input_feature.view(batch_size, height, width, num_channels)
- # pad input to be disible by width and height, if needed
- input_feature = self.maybe_pad(input_feature, height, width)
- # [batch_size, height/2, width/2, num_channels]
- input_feature_0 = input_feature[:, 0::2, 0::2, :]
- # [batch_size, height/2, width/2, num_channels]
- input_feature_1 = input_feature[:, 1::2, 0::2, :]
- # [batch_size, height/2, width/2, num_channels]
- input_feature_2 = input_feature[:, 0::2, 1::2, :]
- # [batch_size, height/2, width/2, num_channels]
- input_feature_3 = input_feature[:, 1::2, 1::2, :]
- # batch_size height/2 width/2 4*num_channels
- input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
- input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
- input_feature = self.norm(input_feature)
- input_feature = self.reduction(input_feature)
- return input_feature
- class ClapAudioEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.num_layers = len(config.depths)
- self.config = config
- self.patch_embed = ClapAudioPatchEmbed(config)
- self.enable_fusion = config.enable_fusion
- self.patch_stride = self.patch_embed.patch_stride
- self.spec_size = config.spec_size
- self.freq_ratio = config.spec_size // config.num_mel_bins
- self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1))
- drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
- grid_size = self.patch_embed.grid_size
- self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)]
- self.layers = nn.ModuleList(
- [
- ClapAudioStage(
- config=config,
- dim=int(config.patch_embeds_hidden_size * 2**i_layer),
- input_resolution=self.input_resolutions[i_layer],
- depth=config.depths[i_layer],
- num_heads=config.num_attention_heads[i_layer],
- drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
- downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None,
- )
- for i_layer in range(self.num_layers)
- ]
- )
- self.gradient_checkpointing = False
- self.batch_norm = nn.BatchNorm2d(config.num_mel_bins)
- self.norm = nn.LayerNorm(self.num_features)
- self.depths = config.depths
- self.avgpool = nn.AdaptiveAvgPool1d(1)
- def reshape_mel2img(self, normalized_input_features):
- """
- The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel
- should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`].
- """
- _, _, time_length, freq_length = normalized_input_features.shape
- spec_width = int(self.spec_size * self.freq_ratio)
- spec_heigth = self.spec_size // self.freq_ratio
- if time_length > spec_width or freq_length > spec_heigth:
- raise ValueError("the wav size should be less than or equal to the swin input size")
- # to avoid bicubic zero error
- if time_length < spec_width:
- normalized_input_features = nn.functional.interpolate(
- normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True
- )
- if freq_length < spec_heigth:
- normalized_input_features = nn.functional.interpolate(
- normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True
- )
- batch, channels, time, freq = normalized_input_features.shape
- # batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio
- normalized_input_features = normalized_input_features.reshape(
- batch, channels * self.freq_ratio, time // self.freq_ratio, freq
- )
- normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous()
- normalized_input_features = normalized_input_features.reshape(
- batch, channels, freq * self.freq_ratio, time // self.freq_ratio
- )
- return normalized_input_features
- def forward(
- self,
- input_features,
- is_longer: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = False,
- output_hidden_states: Optional[bool] = False,
- output_hidden_states_before_downsampling: Optional[bool] = False,
- always_partition: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple, ClapAudioModelOutput]:
- input_features = input_features.transpose(1, 3)
- normalized_input_features = self.batch_norm(input_features)
- normalized_input_features = normalized_input_features.transpose(1, 3)
- is_longer_list_idx = None
- if self.enable_fusion:
- is_longer_list = is_longer.to(input_features.device)
- is_longer_list_idx = torch.where(is_longer_list == 1)[0]
- hidden_states = self.reshape_mel2img(normalized_input_features)
- frames_num = hidden_states.shape[2]
- hidden_states = self.patch_embed(hidden_states, is_longer_list_idx)
- all_hidden_states = () if output_hidden_states else None
- all_reshaped_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- input_dimensions = self.input_resolutions[0]
- if output_hidden_states:
- batch_size, _, hidden_size = hidden_states.shape
- # rearrange batch_size (height width) channels -> batch_size channel height width
- reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
- reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
- all_hidden_states += (hidden_states,)
- all_reshaped_hidden_states += (reshaped_hidden_state,)
- for i, layer_module in enumerate(self.layers):
- layer_head_mask = head_mask[i] if head_mask is not None else None
- input_dimensions = self.input_resolutions[i]
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions
- )
- else:
- layer_outputs = layer_module(
- hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
- )
- hidden_states = layer_outputs[0]
- hidden_states_before_downsampling = layer_outputs[1]
- output_dimensions = layer_outputs[2]
- input_dimensions = (output_dimensions[-2], output_dimensions[-1])
- if output_hidden_states and output_hidden_states_before_downsampling:
- batch_size, _, hidden_size = hidden_states_before_downsampling.shape
- # rearrange batch_size (height width) channels -> batch_size channel height width
- # here we use the original (not downsampled) height and width
- reshaped_hidden_state = hidden_states_before_downsampling.view(
- batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
- )
- reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
- all_hidden_states += (hidden_states_before_downsampling,)
- all_reshaped_hidden_states += (reshaped_hidden_state,)
- elif output_hidden_states and not output_hidden_states_before_downsampling:
- batch_size, _, hidden_size = hidden_states.shape
- # rearrange batch_size (height width) channels -> batch_size channel height width
- reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
- reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
- all_hidden_states += (hidden_states,)
- all_reshaped_hidden_states += (reshaped_hidden_state,)
- if output_attentions:
- all_self_attentions += layer_outputs[3:]
- last_hidden_state = self.norm(hidden_states)
- batch_size, _, n_channels = last_hidden_state.shape
- freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
- temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
- last_hidden_state = (
- last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape)
- )
- batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape
- # group 2D CNN
- c_freq_bin = n_frequencies // self.freq_ratio
- last_hidden_state = last_hidden_state.reshape(
- batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp
- )
- last_hidden_state = (
- last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1)
- )
- latent_output = self.avgpool(torch.flatten(last_hidden_state, 2))
- latent_output = torch.flatten(latent_output, 1)
- if not return_dict:
- return tuple(
- v
- for v in [
- last_hidden_state,
- latent_output,
- all_reshaped_hidden_states,
- all_self_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPooling(
- last_hidden_state=last_hidden_state,
- pooler_output=latent_output,
- hidden_states=all_reshaped_hidden_states,
- attentions=all_self_attentions,
- )
- CLAP_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`ClapConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- CLAP_TEXT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- CLAP_AUDIO_INPUTS_DOCSTRING = r"""
- Args:
- input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also
- retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details.
- is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*):
- Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance
- the features.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- CLAP_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also
- retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details.
- return_loss (`bool`, *optional*):
- Whether or not to return the contrastive loss.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- class ClapProjectionLayer(nn.Module):
- def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]):
- super().__init__()
- self.config = config
- hidden_size = config.hidden_size
- projection_dim = config.projection_dim
- self.linear1 = nn.Linear(hidden_size, projection_dim)
- self.activation = ACT2FN[config.projection_hidden_act]
- self.linear2 = nn.Linear(projection_dim, projection_dim)
- def forward(self, hidden_states):
- hidden_states = self.linear1(hidden_states)
- hidden_states = self.activation(hidden_states)
- hidden_states = self.linear2(hidden_states)
- return hidden_states
- # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->ClapText, persistent=False->persistent=True
- class ClapTextEmbeddings(nn.Module):
- """
- Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
- """
- # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
- def __init__(self, config):
- super().__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True
- )
- self.register_buffer(
- "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True
- )
- # End copy
- self.padding_idx = config.pad_token_id
- self.position_embeddings = nn.Embedding(
- config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
- )
- def forward(
- self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
- ):
- if position_ids is None:
- if input_ids is not None:
- # Create the position ids from the input token ids. Any padded tokens remain padded.
- position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
- else:
- position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
- # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
- # issue #5664
- if token_type_ids is None:
- if hasattr(self, "token_type_ids"):
- buffered_token_type_ids = self.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + token_type_embeddings
- if self.position_embedding_type == "absolute":
- position_embeddings = self.position_embeddings(position_ids)
- embeddings += position_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- def create_position_ids_from_inputs_embeds(self, inputs_embeds):
- """
- We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
- Args:
- inputs_embeds: torch.Tensor
- Returns: torch.Tensor
- """
- input_shape = inputs_embeds.size()[:-1]
- sequence_length = input_shape[1]
- position_ids = torch.arange(
- self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
- )
- return position_ids.unsqueeze(0).expand(input_shape)
- # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ClapText
- class ClapTextSelfAttention(nn.Module):
- def __init__(self, config, position_embedding_type=None):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- self.position_embedding_type = position_embedding_type or getattr(
- config, "position_embedding_type", "absolute"
- )
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- self.max_position_embeddings = config.max_position_embeddings
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
- self.is_decoder = config.is_decoder
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- mixed_query_layer = self.query(hidden_states)
- # If this is instantiated as a cross-attention module, the keys
- # and values come from an encoder; the attention mask needs to be
- # such that the encoder's padding tokens are not attended to.
- is_cross_attention = encoder_hidden_states is not None
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_layer = past_key_value[0]
- value_layer = past_key_value[1]
- attention_mask = encoder_attention_mask
- elif is_cross_attention:
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
- attention_mask = encoder_attention_mask
- elif past_key_value is not None:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
- else:
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- query_layer = self.transpose_for_scores(mixed_query_layer)
- use_cache = past_key_value is not None
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_layer, value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
- query_length, key_length = query_layer.shape[2], key_layer.shape[2]
- if use_cache:
- position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
- -1, 1
- )
- else:
- position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
- position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
- distance = position_ids_l - position_ids_r
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
- if self.position_embedding_type == "relative_key":
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores
- elif self.position_embedding_type == "relative_key_query":
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function)
- attention_scores = attention_scores + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- if self.is_decoder:
- outputs = outputs + (past_key_value,)
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertSelfOutput
- class ClapTextSelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- CLAP_TEXT_SELF_ATTENTION_CLASSES = {
- "eager": ClapTextSelfAttention,
- }
- # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ClapText,BERT->CLAP_TEXT
- class ClapTextAttention(nn.Module):
- def __init__(self, config, position_embedding_type=None):
- super().__init__()
- self.self = CLAP_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation](
- config, position_embedding_type=position_embedding_type
- )
- self.output = ClapTextSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.self.query = prune_linear_layer(self.self.query, index)
- self.self.key = prune_linear_layer(self.self.key, index)
- self.self.value = prune_linear_layer(self.self.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- self_outputs = self.self(
- hidden_states,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate
- class ClapTextIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertOutput
- class ClapTextOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ClapText
- class ClapTextLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = ClapTextAttention(config)
- self.is_decoder = config.is_decoder
- self.add_cross_attention = config.add_cross_attention
- if self.add_cross_attention:
- if not self.is_decoder:
- raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
- self.crossattention = ClapTextAttention(config, position_embedding_type="absolute")
- self.intermediate = ClapTextIntermediate(config)
- self.output = ClapTextOutput(config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor]:
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- self_attention_outputs = self.attention(
- hidden_states,
- attention_mask,
- head_mask,
- output_attentions=output_attentions,
- past_key_value=self_attn_past_key_value,
- )
- attention_output = self_attention_outputs[0]
- # if decoder, the last output is tuple of self-attn cache
- if self.is_decoder:
- outputs = self_attention_outputs[1:-1]
- present_key_value = self_attention_outputs[-1]
- else:
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- cross_attn_present_key_value = None
- if self.is_decoder and encoder_hidden_states is not None:
- if not hasattr(self, "crossattention"):
- raise ValueError(
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
- " by setting `config.add_cross_attention=True`"
- )
- # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- cross_attention_outputs = self.crossattention(
- attention_output,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- cross_attn_past_key_value,
- output_attentions,
- )
- attention_output = cross_attention_outputs[0]
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
- # add cross-attn cache to positions 3,4 of present_key_value tuple
- cross_attn_present_key_value = cross_attention_outputs[-1]
- present_key_value = present_key_value + cross_attn_present_key_value
- layer_output = apply_chunking_to_forward(
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
- )
- outputs = (layer_output,) + outputs
- # if decoder, return the attn key/values as the last output
- if self.is_decoder:
- outputs = outputs + (present_key_value,)
- return outputs
- def feed_forward_chunk(self, attention_output):
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
- # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ClapText
- class ClapTextEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = False,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- next_decoder_cache = () if use_cache else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- past_key_value = past_key_values[i] if past_key_values is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- past_key_value,
- output_attentions,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[-1],)
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if self.config.add_cross_attention:
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- next_decoder_cache,
- all_hidden_states,
- all_self_attentions,
- all_cross_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_decoder_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- cross_attentions=all_cross_attentions,
- )
- # Copied from transformers.models.bert.modeling_bert.BertPooler
- class ClapTextPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- class ClapPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = ClapConfig
- base_model_prefix = "clap"
- supports_gradient_checkpointing = False
- def _init_weights(self, module):
- """Initialize the weights"""
- factor = self.config.initializer_factor
- if isinstance(module, ClapTextEmbeddings):
- module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02)
- module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02)
- elif isinstance(module, ClapModel):
- nn.init.normal_(module.logit_scale_a, std=factor * 0.02)
- nn.init.normal_(module.logit_scale_t, std=factor * 0.02)
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=factor * 0.02)
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- elif isinstance(module, (nn.Conv2d, nn.Linear)):
- in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor
- nn.init.normal_(module.weight, std=in_proj_std)
- if module.bias is not None:
- module.bias.data.zero_()
- class ClapAudioModel(ClapPreTrainedModel):
- config_class = ClapAudioConfig
- main_input_name = "input_features"
- def __init__(self, config: ClapAudioConfig):
- super().__init__(config)
- self.audio_encoder = ClapAudioEncoder(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.audio_encoder.patch_embed.proj
- @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig)
- def forward(
- self,
- input_features: Optional[torch.FloatTensor] = None,
- is_longer: Optional[torch.BoolTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from datasets import load_dataset
- >>> from transformers import AutoProcessor, ClapAudioModel
- >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
- >>> audio_sample = dataset["train"]["audio"][0]["array"]
- >>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused")
- >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused")
- >>> inputs = processor(audios=audio_sample, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_state = outputs.last_hidden_state
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return self.audio_encoder(
- input_features=input_features,
- is_longer=is_longer,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- class ClapTextModel(ClapPreTrainedModel):
- """
- The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
- cross-attention is added between the self-attention layers, following the architecture described in *Attention is
- all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
- Kaiser and Illia Polosukhin.
- To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
- to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
- `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
- .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
- """
- config_class = ClapTextConfig
- def __init__(self, config, add_pooling_layer=True):
- super().__init__(config)
- self.config = config
- self.embeddings = ClapTextEmbeddings(config)
- self.encoder = ClapTextEncoder(config)
- self.pooler = ClapTextPooler(config) if add_pooling_layer else None
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
- r"""
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
- the model is configured as a decoder.
- encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if self.config.is_decoder:
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- else:
- use_cache = False
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- batch_size, seq_length = input_shape
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- # past_key_values_length
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
- if attention_mask is None:
- attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
- if token_type_ids is None:
- if hasattr(self.embeddings, "token_type_ids"):
- buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
- # ourselves in which case we just need to make it broadcastable to all heads.
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
- # If a 2D or 3D attention mask is provided for the cross-attention
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
- if self.config.is_decoder and encoder_hidden_states is not None:
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
- if encoder_attention_mask is None:
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
- else:
- encoder_extended_attention_mask = None
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output = self.embeddings(
- input_ids=input_ids,
- position_ids=position_ids,
- token_type_ids=token_type_ids,
- inputs_embeds=inputs_embeds,
- past_key_values_length=past_key_values_length,
- )
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_extended_attention_mask,
- past_key_values=past_key_values,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndCrossAttentions(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- past_key_values=encoder_outputs.past_key_values,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- cross_attentions=encoder_outputs.cross_attentions,
- )
- @add_start_docstrings(CLAP_START_DOCSTRING)
- class ClapModel(ClapPreTrainedModel):
- config_class = ClapConfig
- def __init__(self, config: ClapConfig):
- super().__init__(config)
- if not isinstance(config.text_config, ClapTextConfig):
- raise TypeError(
- "config.text_config is expected to be of type ClapTextConfig but is of type"
- f" {type(config.text_config)}."
- )
- if not isinstance(config.audio_config, ClapAudioConfig):
- raise TypeError(
- "config.audio_config is expected to be of type ClapAudioConfig but is of type"
- f" {type(config.audio_config)}."
- )
- text_config = config.text_config
- audio_config = config.audio_config
- self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value)))
- self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value)))
- self.projection_dim = config.projection_dim
- self.text_model = ClapTextModel(text_config)
- self.text_projection = ClapProjectionLayer(text_config)
- self.audio_model = ClapAudioModel(audio_config)
- self.audio_projection = ClapProjectionLayer(audio_config)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING)
- def get_text_features(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
- applying the projection layer to the pooled output of [`ClapTextModel`].
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, ClapModel
- >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
- >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
- >>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt")
- >>> text_features = model.get_text_features(**inputs)
- ```"""
- # Use CLAP model's config for some fields (if specified) instead of those of audio & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output
- text_features = self.text_projection(pooled_output)
- text_features = F.normalize(text_features, dim=-1)
- return text_features
- @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING)
- def get_audio_features(
- self,
- input_features: Optional[torch.Tensor] = None,
- is_longer: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by
- applying the projection layer to the pooled output of [`ClapAudioModel`].
- Examples:
- ```python
- >>> from transformers import AutoFeatureExtractor, ClapModel
- >>> import torch
- >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
- >>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused")
- >>> random_audio = torch.rand((16_000))
- >>> inputs = feature_extractor(random_audio, return_tensors="pt")
- >>> audio_features = model.get_audio_features(**inputs)
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- audio_outputs = self.audio_model(
- input_features=input_features,
- is_longer=is_longer,
- return_dict=return_dict,
- )
- pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output
- audio_features = self.audio_projection(pooled_output)
- audio_features = F.normalize(audio_features, dim=-1)
- return audio_features
- @add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- input_features: Optional[torch.FloatTensor] = None,
- is_longer: Optional[torch.BoolTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- return_loss: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ClapOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from datasets import load_dataset
- >>> from transformers import AutoProcessor, ClapModel
- >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
- >>> audio_sample = dataset["train"]["audio"][0]["array"]
- >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
- >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused")
- >>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"]
- >>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True)
- >>> outputs = model(**inputs)
- >>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score
- >>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities
- ```"""
- # Use CLAP model's config for some fields (if specified) instead of those of audio & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- audio_outputs = self.audio_model(
- input_features=input_features,
- is_longer=is_longer,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output
- audio_embeds = self.audio_projection(audio_embeds)
- text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output
- text_embeds = self.text_projection(text_embeds)
- # normalized features
- audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True)
- text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
- # cosine similarity as logits
- logit_scale_text = self.logit_scale_t.exp()
- logit_scale_audio = self.logit_scale_a.exp()
- logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text
- logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio
- loss = None
- if return_loss:
- caption_loss = contrastive_loss(logits_per_text)
- audio_loss = contrastive_loss(logits_per_audio.t())
- loss = (caption_loss + audio_loss) / 2.0
- if not return_dict:
- output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs)
- return ((loss,) + output) if loss is not None else output
- return ClapOutput(
- loss=loss,
- logits_per_audio=logits_per_audio,
- logits_per_text=logits_per_text,
- text_embeds=text_embeds,
- audio_embeds=audio_embeds,
- text_model_output=text_outputs,
- audio_model_output=audio_outputs,
- )
- @add_start_docstrings(
- """
- CLAP Text Model with a projection layer on top (a linear layer on top of the pooled output).
- """,
- CLAP_START_DOCSTRING,
- )
- class ClapTextModelWithProjection(ClapPreTrainedModel):
- config_class = ClapTextConfig
- def __init__(self, config: ClapTextConfig):
- super().__init__(config)
- self.text_model = ClapTextModel(config)
- self.text_projection = ClapProjectionLayer(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.text_model.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.text_model.embeddings.word_embeddings = value
- @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ClapTextModelOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, ClapTextModelWithProjection
- >>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused")
- >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
- >>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> text_embeds = outputs.text_embeds
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output
- text_embeds = self.text_projection(pooled_output)
- if not return_dict:
- outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
- return tuple(output for output in outputs if output is not None)
- return ClapTextModelOutput(
- text_embeds=text_embeds,
- last_hidden_state=text_outputs.last_hidden_state,
- hidden_states=text_outputs.hidden_states,
- attentions=text_outputs.attentions,
- )
- @add_start_docstrings(
- """
- CLAP Audio Model with a projection layer on top (a linear layer on top of the pooled output).
- """,
- CLAP_START_DOCSTRING,
- )
- class ClapAudioModelWithProjection(ClapPreTrainedModel):
- config_class = ClapAudioConfig
- main_input_name = "input_features"
- def __init__(self, config: ClapAudioConfig):
- super().__init__(config)
- self.audio_model = ClapAudioModel(config)
- self.audio_projection = ClapProjectionLayer(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.audio_model.audio_encoder.patch_embed.proj
- @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig)
- def forward(
- self,
- input_features: Optional[torch.FloatTensor] = None,
- is_longer: Optional[torch.BoolTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ClapAudioModelOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from datasets import load_dataset
- >>> from transformers import ClapAudioModelWithProjection, ClapProcessor
- >>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused")
- >>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused")
- >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
- >>> audio_sample = dataset["train"]["audio"][0]["array"]
- >>> inputs = processor(audios=audio_sample, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> audio_embeds = outputs.audio_embeds
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- audio_outputs = self.audio_model(
- input_features=input_features,
- is_longer=is_longer,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output
- audio_embeds = self.audio_projection(pooled_output)
- if not return_dict:
- outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:]
- return tuple(output for output in outputs if output is not None)
- return ClapAudioModelOutput(
- audio_embeds=audio_embeds,
- last_hidden_state=audio_outputs.last_hidden_state,
- attentions=audio_outputs.attentions,
- hidden_states=audio_outputs.hidden_states,
- )
|