| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Audio/Text processor class for CLAP
- """
- from ...processing_utils import ProcessorMixin
- from ...tokenization_utils_base import BatchEncoding
- class ClapProcessor(ProcessorMixin):
- r"""
- Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor.
- [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the
- [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information.
- Args:
- feature_extractor ([`ClapFeatureExtractor`]):
- The audio processor is a required input.
- tokenizer ([`RobertaTokenizerFast`]):
- The tokenizer is a required input.
- """
- feature_extractor_class = "ClapFeatureExtractor"
- tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
- def __init__(self, feature_extractor, tokenizer):
- super().__init__(feature_extractor, tokenizer)
- def __call__(self, text=None, audios=None, return_tensors=None, **kwargs):
- """
- Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
- and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to
- encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
- ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the
- doctsring of the above two methods for more information.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
- The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
- of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
- and T the sample length of the audio.
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors of a particular framework. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return NumPy `np.ndarray` objects.
- - `'jax'`: Return JAX `jnp.ndarray` objects.
- Returns:
- [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
- `None`).
- - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`.
- """
- sampling_rate = kwargs.pop("sampling_rate", None)
- if text is None and audios is None:
- raise ValueError("You have to specify either text or audios. Both cannot be none.")
- if text is not None:
- encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
- if audios is not None:
- audio_features = self.feature_extractor(
- audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs
- )
- if text is not None and audios is not None:
- encoding.update(audio_features)
- return encoding
- elif text is not None:
- return encoding
- else:
- return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors)
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
- to the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- feature_extractor_input_names = self.feature_extractor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
|