| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """CLIPSeg model configuration"""
- import os
- from typing import Union
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class CLIPSegTextConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
- CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the CLIPSeg
- [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 49408):
- Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
- by the `inputs_ids` passed when calling [`CLIPSegModel`].
- hidden_size (`int`, *optional*, defaults to 512):
- Dimensionality of the encoder layers and the pooler layer.
- intermediate_size (`int`, *optional*, defaults to 2048):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 8):
- Number of attention heads for each attention layer in the Transformer encoder.
- max_position_embeddings (`int`, *optional*, defaults to 77):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
- layer_norm_eps (`float`, *optional*, defaults to 1e-05):
- The epsilon used by the layer normalization layers.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- initializer_factor (`float`, *optional*, defaults to 1.0):
- A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
- testing).
- pad_token_id (`int`, *optional*, defaults to 1):
- Padding token id.
- bos_token_id (`int`, *optional*, defaults to 49406):
- Beginning of stream token id.
- eos_token_id (`int`, *optional*, defaults to 49407):
- End of stream token id.
- Example:
- ```python
- >>> from transformers import CLIPSegTextConfig, CLIPSegTextModel
- >>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
- >>> configuration = CLIPSegTextConfig()
- >>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
- >>> model = CLIPSegTextModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "clipseg_text_model"
- def __init__(
- self,
- vocab_size=49408,
- hidden_size=512,
- intermediate_size=2048,
- num_hidden_layers=12,
- num_attention_heads=8,
- max_position_embeddings=77,
- hidden_act="quick_gelu",
- layer_norm_eps=1e-5,
- attention_dropout=0.0,
- initializer_range=0.02,
- initializer_factor=1.0,
- pad_token_id=1,
- bos_token_id=49406,
- eos_token_id=49407,
- **kwargs,
- ):
- super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.max_position_embeddings = max_position_embeddings
- self.layer_norm_eps = layer_norm_eps
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.initializer_factor = initializer_factor
- self.attention_dropout = attention_dropout
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
- # get the text config dict if we are loading from CLIPSegConfig
- if config_dict.get("model_type") == "clipseg":
- config_dict = config_dict["text_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class CLIPSegVisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
- CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the CLIPSeg
- [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- num_channels (`int`, *optional*, defaults to 3):
- The number of input channels.
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- patch_size (`int`, *optional*, defaults to 32):
- The size (resolution) of each patch.
- hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
- layer_norm_eps (`float`, *optional*, defaults to 1e-05):
- The epsilon used by the layer normalization layers.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- initializer_factor (`float`, *optional*, defaults to 1.0):
- A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
- testing).
- Example:
- ```python
- >>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel
- >>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
- >>> configuration = CLIPSegVisionConfig()
- >>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
- >>> model = CLIPSegVisionModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "clipseg_vision_model"
- def __init__(
- self,
- hidden_size=768,
- intermediate_size=3072,
- num_hidden_layers=12,
- num_attention_heads=12,
- num_channels=3,
- image_size=224,
- patch_size=32,
- hidden_act="quick_gelu",
- layer_norm_eps=1e-5,
- attention_dropout=0.0,
- initializer_range=0.02,
- initializer_factor=1.0,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.num_channels = num_channels
- self.patch_size = patch_size
- self.image_size = image_size
- self.initializer_range = initializer_range
- self.initializer_factor = initializer_factor
- self.attention_dropout = attention_dropout
- self.layer_norm_eps = layer_norm_eps
- self.hidden_act = hidden_act
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
- # get the vision config dict if we are loading from CLIPSegConfig
- if config_dict.get("model_type") == "clipseg":
- config_dict = config_dict["vision_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class CLIPSegConfig(PretrainedConfig):
- r"""
- [`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
- instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
- Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
- [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- text_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
- vision_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
- projection_dim (`int`, *optional*, defaults to 512):
- Dimensionality of text and vision projection layers.
- logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
- The initial value of the *logit_scale* parameter. Default is used as per the original CLIPSeg implementation.
- extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
- Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
- reduce_dim (`int`, *optional*, defaults to 64):
- Dimensionality to reduce the CLIP vision embedding.
- decoder_num_attention_heads (`int`, *optional*, defaults to 4):
- Number of attention heads in the decoder of CLIPSeg.
- decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
- decoder_intermediate_size (`int`, *optional*, defaults to 2048):
- Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
- conditional_layer (`int`, *optional*, defaults to 0):
- The layer to use of the Transformer encoder whose activations will be combined with the condition
- embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
- use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
- Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
- segmentation.
- kwargs (*optional*):
- Dictionary of keyword arguments.
- Example:
- ```python
- >>> from transformers import CLIPSegConfig, CLIPSegModel
- >>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
- >>> configuration = CLIPSegConfig()
- >>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
- >>> model = CLIPSegModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- >>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig
- >>> # Initializing a CLIPSegText and CLIPSegVision configuration
- >>> config_text = CLIPSegTextConfig()
- >>> config_vision = CLIPSegVisionConfig()
- >>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
- ```"""
- model_type = "clipseg"
- def __init__(
- self,
- text_config=None,
- vision_config=None,
- projection_dim=512,
- logit_scale_init_value=2.6592,
- extract_layers=[3, 6, 9],
- reduce_dim=64,
- decoder_num_attention_heads=4,
- decoder_attention_dropout=0.0,
- decoder_hidden_act="quick_gelu",
- decoder_intermediate_size=2048,
- conditional_layer=0,
- use_complex_transposed_convolution=False,
- **kwargs,
- ):
- # If `_config_dict` exist, we use them for the backward compatibility.
- # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
- # of confusion!).
- text_config_dict = kwargs.pop("text_config_dict", None)
- vision_config_dict = kwargs.pop("vision_config_dict", None)
- super().__init__(**kwargs)
- # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
- # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
- # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
- if text_config_dict is not None:
- if text_config is None:
- text_config = {}
- # This is the complete result when using `text_config_dict`.
- _text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict()
- # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
- for key, value in _text_config_dict.items():
- if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
- # If specified in `text_config_dict`
- if key in text_config_dict:
- message = (
- f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
- f'The value `text_config_dict["{key}"]` will be used instead.'
- )
- # If inferred from default argument values (just to be super careful)
- else:
- message = (
- f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The "
- f'value `text_config["{key}"]` will be overridden.'
- )
- logger.info(message)
- # Update all values in `text_config` with the ones in `_text_config_dict`.
- text_config.update(_text_config_dict)
- if vision_config_dict is not None:
- if vision_config is None:
- vision_config = {}
- # This is the complete result when using `vision_config_dict`.
- _vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict()
- # convert keys to string instead of integer
- if "id2label" in _vision_config_dict:
- _vision_config_dict["id2label"] = {
- str(key): value for key, value in _vision_config_dict["id2label"].items()
- }
- # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
- for key, value in _vision_config_dict.items():
- if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
- # If specified in `vision_config_dict`
- if key in vision_config_dict:
- message = (
- f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
- f'values. The value `vision_config_dict["{key}"]` will be used instead.'
- )
- # If inferred from default argument values (just to be super careful)
- else:
- message = (
- f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. "
- f'The value `vision_config["{key}"]` will be overridden.'
- )
- logger.info(message)
- # Update all values in `vision_config` with the ones in `_vision_config_dict`.
- vision_config.update(_vision_config_dict)
- if text_config is None:
- text_config = {}
- logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.")
- if vision_config is None:
- vision_config = {}
- logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.")
- self.text_config = CLIPSegTextConfig(**text_config)
- self.vision_config = CLIPSegVisionConfig(**vision_config)
- self.projection_dim = projection_dim
- self.logit_scale_init_value = logit_scale_init_value
- self.extract_layers = extract_layers
- self.reduce_dim = reduce_dim
- self.decoder_num_attention_heads = decoder_num_attention_heads
- self.decoder_attention_dropout = decoder_attention_dropout
- self.decoder_hidden_act = decoder_hidden_act
- self.decoder_intermediate_size = decoder_intermediate_size
- self.conditional_layer = conditional_layer
- self.initializer_factor = 1.0
- self.use_complex_transposed_convolution = use_complex_transposed_convolution
- @classmethod
- def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs):
- r"""
- Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
- model configuration.
- Returns:
- [`CLIPSegConfig`]: An instance of a configuration object
- """
- return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|