| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510 |
- # coding=utf-8
- # Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch CLIPSeg model."""
- import copy
- import math
- from dataclasses import dataclass
- from typing import Any, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from ...activations import ACT2FN
- from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
- from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- ModelOutput,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- torch_int,
- )
- from .configuration_clipseg import CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "CIDAS/clipseg-rd64-refined"
- # contrastive loss function, adapted from
- # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
- def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
- return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
- # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clipseg
- def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor:
- caption_loss = contrastive_loss(similarity)
- image_loss = contrastive_loss(similarity.t())
- return (caption_loss + image_loss) / 2.0
- @dataclass
- # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg
- class CLIPSegOutput(ModelOutput):
- """
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
- Contrastive loss for image-text similarity.
- logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
- The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
- similarity scores.
- logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
- The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
- similarity scores.
- text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`].
- image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
- The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
- text_model_output (`BaseModelOutputWithPooling`):
- The output of the [`CLIPSegTextModel`].
- vision_model_output (`BaseModelOutputWithPooling`):
- The output of the [`CLIPSegVisionModel`].
- """
- loss: Optional[torch.FloatTensor] = None
- logits_per_image: torch.FloatTensor = None
- logits_per_text: torch.FloatTensor = None
- text_embeds: torch.FloatTensor = None
- image_embeds: torch.FloatTensor = None
- text_model_output: BaseModelOutputWithPooling = None
- vision_model_output: BaseModelOutputWithPooling = None
- def to_tuple(self) -> Tuple[Any]:
- return tuple(
- self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
- for k in self.keys()
- )
- @dataclass
- class CLIPSegDecoderOutput(ModelOutput):
- """
- Args:
- logits (`torch.FloatTensor` of shape `(batch_size, height, width)`):
- Classification scores for each pixel.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
- the self-attention heads.
- """
- logits: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- @dataclass
- class CLIPSegImageSegmentationOutput(ModelOutput):
- """
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
- Contrastive loss for image-text similarity.
- ...
- vision_model_output (`BaseModelOutputWithPooling`):
- The output of the [`CLIPSegVisionModel`].
- """
- loss: Optional[torch.FloatTensor] = None
- logits: torch.FloatTensor = None
- conditional_embeddings: torch.FloatTensor = None
- pooled_output: torch.FloatTensor = None
- vision_model_output: BaseModelOutputWithPooling = None
- decoder_output: CLIPSegDecoderOutput = None
- def to_tuple(self) -> Tuple[Any]:
- return tuple(
- self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple()
- for k in self.keys()
- )
- class CLIPSegVisionEmbeddings(nn.Module):
- # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg
- def __init__(self, config: CLIPSegVisionConfig):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.image_size = config.image_size
- self.patch_size = config.patch_size
- self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
- self.patch_embedding = nn.Conv2d(
- in_channels=config.num_channels,
- out_channels=self.embed_dim,
- kernel_size=self.patch_size,
- stride=self.patch_size,
- bias=False,
- )
- self.num_patches = (self.image_size // self.patch_size) ** 2
- self.num_positions = self.num_patches + 1
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
- self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
- def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
- """
- This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
- images. This method is also adapted to support torch.jit tracing.
- Adapted from:
- - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
- """
- num_patches = embeddings.shape[1] - 1
- position_embedding = self.position_embedding.weight.unsqueeze(0)
- num_positions = position_embedding.shape[1] - 1
- # always interpolate when tracing to ensure the exported model works for dynamic input shapes
- if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
- return self.position_embedding(self.position_ids)
- class_pos_embed = position_embedding[:, :1]
- patch_pos_embed = position_embedding[:, 1:]
- dim = embeddings.shape[-1]
- new_height = height // self.patch_size
- new_width = width // self.patch_size
- sqrt_num_positions = torch_int(num_positions**0.5)
- patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
- patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
- patch_pos_embed = nn.functional.interpolate(
- patch_pos_embed,
- size=(new_height, new_width),
- mode="bicubic",
- align_corners=False,
- )
- patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
- return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
- def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
- batch_size, _, height, width = pixel_values.shape
- if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
- raise ValueError(
- f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
- )
- patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
- patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
- class_embeds = self.class_embedding.expand(batch_size, 1, -1)
- embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
- if interpolate_pos_encoding:
- embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
- else:
- embeddings = embeddings + self.position_embedding(self.position_ids)
- return embeddings
- # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->CLIPSeg
- class CLIPSegTextEmbeddings(nn.Module):
- def __init__(self, config: CLIPSegTextConfig):
- super().__init__()
- embed_dim = config.hidden_size
- self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
- self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- ) -> torch.Tensor:
- seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if inputs_embeds is None:
- inputs_embeds = self.token_embedding(input_ids)
- position_embeddings = self.position_embedding(position_ids)
- embeddings = inputs_embeds + position_embeddings
- return embeddings
- # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->CLIPSeg
- class CLIPSegAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.embed_dim // self.num_heads
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
- f" {self.num_heads})."
- )
- self.scale = self.head_dim**-0.5
- self.dropout = config.attention_dropout
- self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
- self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
- self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
- self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- causal_attention_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
- """Input shape: Batch x Time x Channel"""
- bsz, tgt_len, embed_dim = hidden_states.size()
- # get query proj
- query_states = self.q_proj(hidden_states) * self.scale
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- proj_shape = (bsz * self.num_heads, -1, self.head_dim)
- query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
- key_states = key_states.view(*proj_shape)
- value_states = value_states.view(*proj_shape)
- src_len = key_states.size(1)
- attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
- if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
- raise ValueError(
- f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
- f" {attn_weights.size()}"
- )
- # apply the causal_attention_mask first
- if causal_attention_mask is not None:
- if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
- raise ValueError(
- f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
- f" {causal_attention_mask.size()}"
- )
- attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- if attention_mask is not None:
- if attention_mask.size() != (bsz, 1, tgt_len, src_len):
- raise ValueError(
- f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
- )
- attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
- if output_attentions:
- # this operation is a bit akward, but it's required to
- # make sure that attn_weights keeps its gradient.
- # In order to do so, attn_weights have to reshaped
- # twice and have to be reused in the following
- attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
- attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
- else:
- attn_weights_reshaped = None
- attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
- attn_output = torch.bmm(attn_probs, value_states)
- if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
- attn_output = attn_output.transpose(1, 2)
- attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
- attn_output = self.out_proj(attn_output)
- return attn_output, attn_weights_reshaped
- # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->CLIPSeg
- class CLIPSegMLP(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.activation_fn = ACT2FN[config.hidden_act]
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.fc1(hidden_states)
- hidden_states = self.activation_fn(hidden_states)
- hidden_states = self.fc2(hidden_states)
- return hidden_states
- # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->CLIPSeg
- class CLIPSegEncoderLayer(nn.Module):
- def __init__(self, config: CLIPSegConfig):
- super().__init__()
- self.embed_dim = config.hidden_size
- self.self_attn = CLIPSegAttention(config)
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- self.mlp = CLIPSegMLP(config)
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: torch.Tensor,
- causal_attention_mask: torch.Tensor,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.FloatTensor]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- `(config.encoder_attention_heads,)`.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- """
- residual = hidden_states
- hidden_states = self.layer_norm1(hidden_states)
- hidden_states, attn_weights = self.self_attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- causal_attention_mask=causal_attention_mask,
- output_attentions=output_attentions,
- )
- hidden_states = residual + hidden_states
- residual = hidden_states
- hidden_states = self.layer_norm2(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (attn_weights,)
- return outputs
- class CLIPSegPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = CLIPSegConfig
- base_model_prefix = "clip"
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- """Initialize the weights"""
- factor = self.config.initializer_factor
- if isinstance(module, CLIPSegTextEmbeddings):
- module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
- module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
- elif isinstance(module, CLIPSegVisionEmbeddings):
- factor = self.config.initializer_factor
- nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
- nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
- nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
- elif isinstance(module, CLIPSegAttention):
- factor = self.config.initializer_factor
- in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
- out_proj_std = (module.embed_dim**-0.5) * factor
- nn.init.normal_(module.q_proj.weight, std=in_proj_std)
- nn.init.normal_(module.k_proj.weight, std=in_proj_std)
- nn.init.normal_(module.v_proj.weight, std=in_proj_std)
- nn.init.normal_(module.out_proj.weight, std=out_proj_std)
- elif isinstance(module, CLIPSegMLP):
- factor = self.config.initializer_factor
- in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
- fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
- nn.init.normal_(module.fc1.weight, std=fc_std)
- nn.init.normal_(module.fc2.weight, std=in_proj_std)
- elif isinstance(module, CLIPSegModel):
- nn.init.normal_(
- module.text_projection.weight,
- std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
- )
- nn.init.normal_(
- module.visual_projection.weight,
- std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
- )
- if isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- if isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
- CLIPSEG_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`CLIPSegConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- CLIPSEG_TEXT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- CLIPSEG_VISION_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
- [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
- Whether to interpolate the pre-trained position encodings.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- CLIPSEG_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
- [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
- return_loss (`bool`, *optional*):
- Whether or not to return the contrastive loss.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
- Whether to interpolate the pre-trained position encodings.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->CLIPSeg
- class CLIPSegEncoder(nn.Module):
- """
- Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
- [`CLIPSegEncoderLayer`].
- Args:
- config: CLIPSegConfig
- """
- def __init__(self, config: CLIPSegConfig):
- super().__init__()
- self.config = config
- self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- inputs_embeds,
- attention_mask: Optional[torch.Tensor] = None,
- causal_attention_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutput]:
- r"""
- Args:
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Causal mask for the text model. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- encoder_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- hidden_states = inputs_embeds
- for idx, encoder_layer in enumerate(self.layers):
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- encoder_layer.__call__,
- hidden_states,
- attention_mask,
- causal_attention_mask,
- output_attentions,
- )
- else:
- layer_outputs = encoder_layer(
- hidden_states,
- attention_mask,
- causal_attention_mask,
- output_attentions=output_attentions,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
- )
- class CLIPSegTextTransformer(nn.Module):
- def __init__(self, config: CLIPSegTextConfig):
- super().__init__()
- self.config = config
- embed_dim = config.hidden_size
- self.embeddings = CLIPSegTextEmbeddings(config)
- self.encoder = CLIPSegEncoder(config)
- self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
- # For `pooled_output` computation
- self.eos_token_id = config.eos_token_id
- @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
- # Adapted from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- r"""
- Returns:
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is None:
- raise ValueError("You have to specify input_ids")
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
- # CLIPSeg's text model uses causal mask, prepare it here.
- # https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324
- causal_attention_mask = _create_4d_causal_attention_mask(
- input_shape, hidden_states.dtype, device=hidden_states.device
- )
- # expand attention_mask
- if attention_mask is not None:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
- encoder_outputs = self.encoder(
- inputs_embeds=hidden_states,
- attention_mask=attention_mask,
- causal_attention_mask=causal_attention_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- last_hidden_state = encoder_outputs[0]
- last_hidden_state = self.final_layer_norm(last_hidden_state)
- if self.eos_token_id == 2:
- # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
- # A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added
- # ------------------------------------------------------------
- # text_embeds.shape = [batch_size, sequence_length, transformer.width]
- # take features from the eot embedding (eot_token is the highest number in each sequence)
- # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
- pooled_output = last_hidden_state[
- torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
- input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
- ]
- else:
- # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
- pooled_output = last_hidden_state[
- torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
- # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
- # Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer)
- (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
- .int()
- .argmax(dim=-1),
- ]
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- class CLIPSegTextModel(CLIPSegPreTrainedModel):
- config_class = CLIPSegTextConfig
- _no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"]
- def __init__(self, config: CLIPSegTextConfig):
- super().__init__(config)
- self.text_model = CLIPSegTextTransformer(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.text_model.embeddings.token_embedding
- def set_input_embeddings(self, value):
- self.text_model.embeddings.token_embedding = value
- @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, CLIPSegTextModel
- >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_state = outputs.last_hidden_state
- >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
- ```"""
- return self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- class CLIPSegVisionTransformer(nn.Module):
- # Copied from transformers.models.altclip.modeling_altclip.AltCLIPVisionTransformer.__init__ with AltCLIP->CLIPSeg
- def __init__(self, config: CLIPSegVisionConfig):
- super().__init__()
- self.config = config
- embed_dim = config.hidden_size
- self.embeddings = CLIPSegVisionEmbeddings(config)
- self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
- self.encoder = CLIPSegEncoder(config)
- self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
- @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
- # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
- def forward(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- interpolate_pos_encoding: Optional[bool] = False,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- r"""
- Returns:
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
- hidden_states = self.pre_layrnorm(hidden_states)
- encoder_outputs = self.encoder(
- inputs_embeds=hidden_states,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- last_hidden_state = encoder_outputs[0]
- pooled_output = last_hidden_state[:, 0, :]
- pooled_output = self.post_layernorm(pooled_output)
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- class CLIPSegVisionModel(CLIPSegPreTrainedModel):
- config_class = CLIPSegVisionConfig
- main_input_name = "pixel_values"
- def __init__(self, config: CLIPSegVisionConfig):
- super().__init__(config)
- self.vision_model = CLIPSegVisionTransformer(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.vision_model.embeddings.patch_embedding
- @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
- def forward(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: Optional[bool] = False,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, CLIPSegVisionModel
- >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_state = outputs.last_hidden_state
- >>> pooled_output = outputs.pooler_output # pooled CLS states
- ```"""
- return self.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- )
- @add_start_docstrings(CLIPSEG_START_DOCSTRING)
- class CLIPSegModel(CLIPSegPreTrainedModel):
- config_class = CLIPSegConfig
- def __init__(self, config: CLIPSegConfig):
- super().__init__(config)
- if not isinstance(config.text_config, CLIPSegTextConfig):
- raise TypeError(
- "config.text_config is expected to be of type CLIPSegTextConfig but is of type"
- f" {type(config.text_config)}."
- )
- if not isinstance(config.vision_config, CLIPSegVisionConfig):
- raise TypeError(
- "config.vision_config is expected to be of type CLIPSegVisionConfig but is of type"
- f" {type(config.vision_config)}."
- )
- text_config = config.text_config
- vision_config = config.vision_config
- self.projection_dim = config.projection_dim
- self.text_embed_dim = text_config.hidden_size
- self.vision_embed_dim = vision_config.hidden_size
- self.text_model = CLIPSegTextTransformer(text_config)
- self.vision_model = CLIPSegVisionTransformer(vision_config)
- self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
- self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
- self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
- def get_text_features(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
- applying the projection layer to the pooled output of [`CLIPSegTextModel`].
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, CLIPSegModel
- >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
- >>> text_features = model.get_text_features(**inputs)
- ```"""
- # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = text_outputs[1]
- text_features = self.text_projection(pooled_output)
- return text_features
- @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
- def get_image_features(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- return_dict: Optional[bool] = None,
- ) -> torch.FloatTensor:
- r"""
- Returns:
- image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
- applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, CLIPSegModel
- >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(images=image, return_tensors="pt")
- >>> image_features = model.get_image_features(**inputs)
- ```"""
- # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- )
- pooled_output = vision_outputs[1] # pooled_output
- image_features = self.visual_projection(pooled_output)
- return image_features
- @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- pixel_values: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- return_loss: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, CLIPSegOutput]:
- r"""
- Returns:
- Examples:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, CLIPSegModel
- >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(
- ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
- ... )
- >>> outputs = model(**inputs)
- >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
- >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
- ```"""
- # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- vision_outputs = self.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- )
- text_outputs = self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- image_embeds = vision_outputs[1]
- image_embeds = self.visual_projection(image_embeds)
- text_embeds = text_outputs[1]
- text_embeds = self.text_projection(text_embeds)
- # normalized features
- image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
- text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
- # cosine similarity as logits
- logit_scale = self.logit_scale.exp()
- logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
- logits_per_image = logits_per_text.t()
- loss = None
- if return_loss:
- loss = clipseg_loss(logits_per_text)
- if not return_dict:
- output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
- return ((loss,) + output) if loss is not None else output
- return CLIPSegOutput(
- loss=loss,
- logits_per_image=logits_per_image,
- logits_per_text=logits_per_text,
- text_embeds=text_embeds,
- image_embeds=image_embeds,
- text_model_output=text_outputs,
- vision_model_output=vision_outputs,
- )
- class CLIPSegDecoderLayer(nn.Module):
- """
- CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after
- self-attention/MLP, rather than before.
- """
- # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer.__init__ with AltCLIP->CLIPSeg
- def __init__(self, config: CLIPSegConfig):
- super().__init__()
- self.embed_dim = config.hidden_size
- self.self_attn = CLIPSegAttention(config)
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- self.mlp = CLIPSegMLP(config)
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: torch.Tensor,
- causal_attention_mask: torch.Tensor,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.FloatTensor]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- `(config.encoder_attention_heads,)`.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- """
- residual = hidden_states
- hidden_states, attn_weights = self.self_attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- causal_attention_mask=causal_attention_mask,
- output_attentions=output_attentions,
- )
- hidden_states = residual + hidden_states
- hidden_states = self.layer_norm1(hidden_states)
- residual = hidden_states
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states
- hidden_states = self.layer_norm2(hidden_states)
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (attn_weights,)
- return outputs
- class CLIPSegDecoder(CLIPSegPreTrainedModel):
- def __init__(self, config: CLIPSegConfig):
- super().__init__(config)
- self.conditional_layer = config.conditional_layer
- self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim)
- self.film_add = nn.Linear(config.projection_dim, config.reduce_dim)
- if config.use_complex_transposed_convolution:
- transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4)
- self.transposed_convolution = nn.Sequential(
- nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1),
- nn.ReLU(),
- nn.ConvTranspose2d(
- config.reduce_dim,
- config.reduce_dim // 2,
- kernel_size=transposed_kernels[0],
- stride=transposed_kernels[0],
- ),
- nn.ReLU(),
- nn.ConvTranspose2d(
- config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1]
- ),
- )
- else:
- self.transposed_convolution = nn.ConvTranspose2d(
- config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size
- )
- depth = len(config.extract_layers)
- self.reduces = nn.ModuleList(
- [nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)]
- )
- decoder_config = copy.deepcopy(config.vision_config)
- decoder_config.hidden_size = config.reduce_dim
- decoder_config.num_attention_heads = config.decoder_num_attention_heads
- decoder_config.intermediate_size = config.decoder_intermediate_size
- decoder_config.hidden_act = "relu"
- self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))])
- def forward(
- self,
- hidden_states: Tuple[torch.Tensor],
- conditional_embeddings: torch.Tensor,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = True,
- ):
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- activations = hidden_states[::-1]
- output = None
- for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)):
- if output is not None:
- output = reduce(activation) + output
- else:
- output = reduce(activation)
- if i == self.conditional_layer:
- output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add(
- conditional_embeddings
- )
- output = output.permute(1, 0, 2)
- layer_outputs = layer(
- output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions
- )
- output = layer_outputs[0]
- if output_hidden_states:
- all_hidden_states += (output,)
- if output_attentions:
- all_attentions += (layer_outputs[1],)
- output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len]
- size = int(math.sqrt(output.shape[2]))
- batch_size = conditional_embeddings.shape[0]
- output = output.view(batch_size, output.shape[1], size, size)
- logits = self.transposed_convolution(output).squeeze(1)
- if not return_dict:
- return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None)
- return CLIPSegDecoderOutput(
- logits=logits,
- hidden_states=all_hidden_states,
- attentions=all_attentions,
- )
- @add_start_docstrings(
- """
- CLIPSeg model with a Transformer-based decoder on top for zero-shot and one-shot image segmentation.
- """,
- CLIPSEG_START_DOCSTRING,
- )
- class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel):
- config_class = CLIPSegConfig
- def __init__(self, config: CLIPSegConfig):
- super().__init__(config)
- self.config = config
- self.clip = CLIPSegModel(config)
- self.extract_layers = config.extract_layers
- self.decoder = CLIPSegDecoder(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_conditional_embeddings(
- self,
- batch_size: int = None,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- conditional_pixel_values: Optional[torch.Tensor] = None,
- ):
- if input_ids is not None:
- # compute conditional embeddings from texts
- if len(input_ids) != batch_size:
- raise ValueError("Make sure to pass as many prompt texts as there are query images")
- with torch.no_grad():
- conditional_embeddings = self.clip.get_text_features(
- input_ids, attention_mask=attention_mask, position_ids=position_ids
- )
- elif conditional_pixel_values is not None:
- # compute conditional embeddings from images
- if len(conditional_pixel_values) != batch_size:
- raise ValueError("Make sure to pass as many prompt images as there are query images")
- with torch.no_grad():
- conditional_embeddings = self.clip.get_image_features(conditional_pixel_values)
- else:
- raise ValueError(
- "Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`"
- )
- return conditional_embeddings
- @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig)
- def forward(
- self,
- input_ids: Optional[torch.FloatTensor] = None,
- pixel_values: Optional[torch.FloatTensor] = None,
- conditional_pixel_values: Optional[torch.FloatTensor] = None,
- conditional_embeddings: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, CLIPSegOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoProcessor, CLIPSegForImageSegmentation
- >>> from PIL import Image
- >>> import requests
- >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> texts = ["a cat", "a remote", "a blanket"]
- >>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> logits = outputs.logits
- >>> print(logits.shape)
- torch.Size([3, 352, 352])
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # step 1: forward the query images through the frozen CLIP vision encoder
- with torch.no_grad():
- vision_outputs = self.clip.vision_model(
- pixel_values=pixel_values,
- output_attentions=output_attentions,
- output_hidden_states=True, # we need the intermediate hidden states
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- )
- pooled_output = self.clip.visual_projection(vision_outputs[1])
- hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2]
- # we add +1 here as the hidden states also include the initial embeddings
- activations = [hidden_states[i + 1] for i in self.extract_layers]
- # update vision_outputs
- if return_dict:
- vision_outputs = BaseModelOutputWithPooling(
- last_hidden_state=vision_outputs.last_hidden_state,
- pooler_output=vision_outputs.pooler_output,
- hidden_states=vision_outputs.hidden_states if output_hidden_states else None,
- attentions=vision_outputs.attentions,
- )
- else:
- vision_outputs = (
- vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs
- )
- # step 2: compute conditional embeddings, either from text, images or an own provided embedding
- if conditional_embeddings is None:
- conditional_embeddings = self.get_conditional_embeddings(
- batch_size=pixel_values.shape[0],
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- conditional_pixel_values=conditional_pixel_values,
- )
- else:
- if conditional_embeddings.shape[0] != pixel_values.shape[0]:
- raise ValueError(
- "Make sure to pass as many conditional embeddings as there are query images in the batch"
- )
- if conditional_embeddings.shape[1] != self.config.projection_dim:
- raise ValueError(
- "Make sure that the feature dimension of the conditional embeddings matches"
- " `config.projection_dim`."
- )
- # step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks
- decoder_outputs = self.decoder(
- activations,
- conditional_embeddings,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
- loss = None
- if labels is not None:
- # move labels to the correct device to enable PP
- labels = labels.to(logits.device)
- loss_fn = nn.BCEWithLogitsLoss()
- loss = loss_fn(logits, labels)
- if not return_dict:
- output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs)
- return ((loss,) + output) if loss is not None else output
- return CLIPSegImageSegmentationOutput(
- loss=loss,
- logits=logits,
- conditional_embeddings=conditional_embeddings,
- pooled_output=pooled_output,
- vision_model_output=vision_outputs,
- decoder_output=decoder_outputs,
- )
|