| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Image/Text processor class for CLIPSeg
- """
- import warnings
- from ...processing_utils import ProcessorMixin
- from ...tokenization_utils_base import BatchEncoding
- class CLIPSegProcessor(ProcessorMixin):
- r"""
- Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor.
- [`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the
- [`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information.
- Args:
- image_processor ([`ViTImageProcessor`], *optional*):
- The image processor is a required input.
- tokenizer ([`CLIPTokenizerFast`], *optional*):
- The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "ViTImageProcessor"
- tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
- def __init__(self, image_processor=None, tokenizer=None, **kwargs):
- feature_extractor = None
- if "feature_extractor" in kwargs:
- warnings.warn(
- "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
- " instead.",
- FutureWarning,
- )
- feature_extractor = kwargs.pop("feature_extractor")
- image_processor = image_processor if image_processor is not None else feature_extractor
- if image_processor is None:
- raise ValueError("You need to specify an `image_processor`.")
- if tokenizer is None:
- raise ValueError("You need to specify a `tokenizer`.")
- super().__init__(image_processor, tokenizer)
- def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs):
- """
- Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
- and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
- the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
- ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of
- the above two methods for more information.
- Args:
- text (`str`, `List[str]`, `List[List[str]]`):
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
- tensor. Both channels-first and channels-last formats are supported.
- visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
- The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
- NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
- (C, H, W), where C is a number of channels, H and W are image height and width.
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
- If set, will return tensors of a particular framework. Acceptable values are:
- - `'tf'`: Return TensorFlow `tf.constant` objects.
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
- - `'np'`: Return NumPy `np.ndarray` objects.
- - `'jax'`: Return JAX `jnp.ndarray` objects.
- Returns:
- [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
- `None`).
- - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- """
- if text is None and visual_prompt is None and images is None:
- raise ValueError("You have to specify either text, visual prompt or images.")
- if text is not None and visual_prompt is not None:
- raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.")
- if text is not None:
- encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
- if visual_prompt is not None:
- prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs)
- if images is not None:
- image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
- if visual_prompt is not None and images is not None:
- encoding = {
- "pixel_values": image_features.pixel_values,
- "conditional_pixel_values": prompt_features.pixel_values,
- }
- return encoding
- elif text is not None and images is not None:
- encoding["pixel_values"] = image_features.pixel_values
- return encoding
- elif text is not None:
- return encoding
- elif visual_prompt is not None:
- encoding = {
- "conditional_pixel_values": prompt_features.pixel_values,
- }
- return encoding
- else:
- return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def feature_extractor_class(self):
- warnings.warn(
- "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
- FutureWarning,
- )
- return self.image_processor_class
- @property
- def feature_extractor(self):
- warnings.warn(
- "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
- FutureWarning,
- )
- return self.image_processor
|