| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for CLVP
- """
- from ...processing_utils import ProcessorMixin
- class ClvpProcessor(ProcessorMixin):
- r"""
- Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor.
- [`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the
- [`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information.
- Args:
- feature_extractor (`ClvpFeatureExtractor`):
- An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input.
- tokenizer (`ClvpTokenizer`):
- An instance of [`ClvpTokenizer`]. The tokenizer is a required input.
- """
- feature_extractor_class = "ClvpFeatureExtractor"
- tokenizer_class = "ClvpTokenizer"
- model_input_names = [
- "input_ids",
- "input_features",
- "attention_mask",
- ]
- def __init__(self, feature_extractor, tokenizer):
- super().__init__(feature_extractor, tokenizer)
- def __call__(self, *args, **kwargs):
- """
- Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text`
- argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
- information.
- """
- raw_speech = kwargs.pop("raw_speech", None)
- sampling_rate = kwargs.pop("sampling_rate", None)
- text = kwargs.pop("text", None)
- if raw_speech is None and text is None:
- raise ValueError("You need to specify either an `raw_speech` or `text` input to process.")
- if raw_speech is not None:
- inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs)
- if text is not None:
- encodings = self.tokenizer(text, **kwargs)
- if text is None:
- return inputs
- elif raw_speech is None:
- return encodings
- else:
- inputs["input_ids"] = encodings["input_ids"]
- inputs["attention_mask"] = encodings["attention_mask"]
- return inputs
- # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
|