| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- # coding=utf-8
- # Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for OpenAI GPT."""
- import json
- import re
- from typing import TYPE_CHECKING, List, Optional, Tuple, Union
- import numpy as np
- from ...utils import is_tf_available, is_torch_available, logging
- if TYPE_CHECKING:
- if is_torch_available():
- import torch
- if is_tf_available():
- import tensorflow as tf
- from tokenizers import pre_tokenizers
- from ...tokenization_utils_base import BatchEncoding
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from .tokenization_codegen import CodeGenTokenizer
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
- class CodeGenTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
- Byte-Pair-Encoding.
- This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
- be encoded differently whether it is at the beginning of the sentence (without space) or not:
- ```python
- >>> from transformers import CodeGenTokenizerFast
- >>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono")
- >>> tokenizer("Hello world")["input_ids"]
- [15496, 995]
- >>> tokenizer(" Hello world")["input_ids"]
- [18435, 995]
- ```
- You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
- the model was not pretrained this way, it might yield a decrease in performance.
- <Tip>
- When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
- </Tip>
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`, *optional*):
- Path to the vocabulary file.
- merges_file (`str`, *optional*):
- Path to the merges file.
- tokenizer_file (`str`, *optional*):
- Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
- contains everything needed to load the tokenizer.
- unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
- The beginning of sequence token.
- eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
- The end of sequence token.
- add_prefix_space (`bool`, *optional*, defaults to `False`):
- Whether or not to add an initial space to the input. This allows to treat the leading word just as any
- other word. (CodeGen tokenizer detect beginning of words by the preceding space).
- return_token_type_ids (`bool`, *optional*, defaults to `False`):
- Whether to return token type IDs.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- slow_tokenizer_class = CodeGenTokenizer
- def __init__(
- self,
- vocab_file=None,
- merges_file=None,
- tokenizer_file=None,
- unk_token="<|endoftext|>",
- bos_token="<|endoftext|>",
- eos_token="<|endoftext|>",
- add_prefix_space=False,
- return_token_type_ids=False,
- **kwargs,
- ):
- self.return_token_type_ids = return_token_type_ids
- if self.return_token_type_ids:
- self.model_input_names.append("token_type_ids")
- super().__init__(
- vocab_file,
- merges_file,
- tokenizer_file=tokenizer_file,
- unk_token=unk_token,
- bos_token=bos_token,
- eos_token=eos_token,
- add_prefix_space=add_prefix_space,
- return_token_type_ids=return_token_type_ids,
- **kwargs,
- )
- if kwargs.pop("add_bos_token", False):
- model_id = kwargs.pop("name_or_path", "")
- raise ValueError(
- "Currenty GPT2's fast tokenizer does NOT support adding a BOS token. "
- "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
- f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
- f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
- "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
- " so that the fast tokenizer works correctly."
- )
- pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
- if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
- pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
- pre_tok_state["add_prefix_space"] = add_prefix_space
- self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
- self.add_prefix_space = add_prefix_space
- def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- assert self.add_prefix_space or not is_split_into_words, (
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
- "to use it with pretokenized inputs."
- )
- return super()._batch_encode_plus(*args, **kwargs)
- def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- assert self.add_prefix_space or not is_split_into_words, (
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
- "to use it with pretokenized inputs."
- )
- return super()._encode_plus(*args, **kwargs)
- # Copied from transformers.models.codegen.tokenization_codegen.CodeGenTokenizer.create_token_type_ids_from_sequences
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. A sequence
- pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
- """
- sep = [self.sep_token_id] if self.sep_token_id is not None else []
- cls = [self.cls_token_id] if self.sep_token_id is not None else []
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(save_directory, name=filename_prefix)
- return tuple(files)
- def decode(
- self,
- token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
- skip_special_tokens: bool = False,
- clean_up_tokenization_spaces: bool = None,
- truncate_before_pattern: Optional[List[str]] = None,
- **kwargs,
- ) -> str:
- """
- Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
- tokens and clean up tokenization spaces.
- Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
- Args:
- token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
- List of tokenized input ids. Can be obtained using the `__call__` method.
- skip_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not to remove special tokens in the decoding.
- clean_up_tokenization_spaces (`bool`, *optional*):
- Whether or not to clean up the tokenization spaces. If `None`, will default to
- `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
- truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
- A list of regular expression strings that will be used to truncate the returned string. This can be
- used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
- of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
- kwargs (additional keyword arguments, *optional*):
- Will be passed to the underlying model specific decode method.
- Returns:
- `str`: The decoded sentence.
- """
- decoded_text = super().decode(
- token_ids=token_ids,
- skip_special_tokens=skip_special_tokens,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- **kwargs,
- )
- if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
- decoded_text = self.truncate(decoded_text, truncate_before_pattern)
- return decoded_text
- def truncate(self, completion, truncate_before_pattern):
- def find_re(string, pattern, start_pos):
- m = pattern.search(string, start_pos)
- return m.start() if m else -1
- terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
- prints = list(re.finditer("^print", completion, re.MULTILINE))
- if len(prints) > 1:
- completion = completion[: prints[1].start()]
- defs = list(re.finditer("^def", completion, re.MULTILINE))
- if len(defs) > 1:
- completion = completion[: defs[1].start()]
- start_pos = 0
- terminals_pos = [
- pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
- ]
- if len(terminals_pos) > 0:
- return completion[: min(terminals_pos)]
- else:
- return completion
|