| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- # coding=utf-8
- # Copyright 2024 Cohere team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Cohere model configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...modeling_rope_utils import rope_config_validation
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class CohereConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
- model according to the specified arguments, defining the model architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.
- Args:
- vocab_size (`int`, *optional*, defaults to 256000):
- Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`CohereModel`]
- hidden_size (`int`, *optional*, defaults to 8192):
- Dimension of the hidden representations.
- intermediate_size (`int`, *optional*, defaults to 22528):
- Dimension of the MLP representations.
- logit_scale (`float`, *optional*, defaults to 0.0625):
- The scaling factor for the output logits.
- num_hidden_layers (`int`, *optional*, defaults to 40):
- Number of hidden layers in the Transformer decoder.
- num_attention_heads (`int`, *optional*, defaults to 64):
- Number of attention heads for each attention layer in the Transformer decoder.
- num_key_value_heads (`int`, *optional*):
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
- by meanpooling all the original heads within that group. For more details checkout [this
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
- `num_attention_heads`.
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in the decoder.
- max_position_embeddings (`int`, *optional*, defaults to 8192):
- The maximum sequence length that this model might ever be used with.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-05):
- The epsilon used by the layer normalization.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`.
- pad_token_id (`int`, *optional*, defaults to 0):
- Padding token id.
- bos_token_id (`int`, *optional*, defaults to 5):
- Beginning of stream token id.
- eos_token_id (`int`, *optional*, defaults to 255001):
- End of stream token id.
- tie_word_embeddings (`bool`, *optional*, defaults to `True`):
- Whether to tie weight embeddings
- rope_theta (`float`, *optional*, defaults to 10000.0):
- The base period of the RoPE embeddings.
- rope_scaling (`Dict`, *optional*):
- Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
- and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
- accordingly.
- Expected contents:
- `rope_type` (`str`):
- The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
- 'llama3'], with 'default' being the original RoPE implementation.
- `factor` (`float`, *optional*):
- Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
- most scaling types, a `factor` of x will enable the model to handle sequences of length x *
- original maximum pre-trained length.
- `original_max_position_embeddings` (`int`, *optional*):
- Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
- pretraining.
- `attention_factor` (`float`, *optional*):
- Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
- computation. If unspecified, it defaults to value recommended by the implementation, using the
- `factor` field to infer the suggested value.
- `beta_fast` (`float`, *optional*):
- Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
- ramp function. If unspecified, it defaults to 32.
- `beta_slow` (`float`, *optional*):
- Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
- ramp function. If unspecified, it defaults to 1.
- `short_factor` (`List[float]`, *optional*):
- Only used with 'longrope'. The scaling factor to be applied to short contexts (<
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
- size divided by the number of attention heads divided by 2
- `long_factor` (`List[float]`, *optional*):
- Only used with 'longrope'. The scaling factor to be applied to long contexts (<
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
- size divided by the number of attention heads divided by 2
- `low_freq_factor` (`float`, *optional*):
- Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
- `high_freq_factor` (`float`, *optional*):
- Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- use_qk_norm (`bool`, *optional*, defaults to `False`):
- Whether to use query-key normalization in the attention
- ```python
- >>> from transformers import CohereModel, CohereConfig
- >>> # Initializing a Cohere model configuration
- >>> configuration = CohereConfig()
- >>> # Initializing a model from the Cohere configuration
- >>> model = CohereModel(configuration) # doctest: +SKIP
- >>> # Accessing the model configuration
- >>> configuration = model.config # doctest: +SKIP
- ```"""
- model_type = "cohere"
- keys_to_ignore_at_inference = ["past_key_values"]
- def __init__(
- self,
- vocab_size=256000,
- hidden_size=8192,
- intermediate_size=22528,
- logit_scale=0.0625,
- num_hidden_layers=40,
- num_attention_heads=64,
- num_key_value_heads=None,
- hidden_act="silu",
- max_position_embeddings=8192,
- initializer_range=0.02,
- layer_norm_eps=1e-5,
- use_cache=True,
- pad_token_id=0,
- bos_token_id=5,
- eos_token_id=255001,
- tie_word_embeddings=True,
- rope_theta=10000.0,
- rope_scaling=None,
- attention_bias=False,
- attention_dropout=0.0,
- use_qk_norm=False,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.hidden_size = hidden_size
- self.logit_scale = logit_scale
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- # for backward compatibility
- if num_key_value_heads is None:
- num_key_value_heads = num_attention_heads
- self.num_key_value_heads = num_key_value_heads
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.use_cache = use_cache
- self.rope_theta = rope_theta
- self.rope_scaling = rope_scaling
- self.attention_bias = attention_bias
- self.attention_dropout = attention_dropout
- self.use_qk_norm = use_qk_norm
- # Validate the correctness of rotary position embeddings parameters
- rope_config_validation(self)
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- tie_word_embeddings=tie_word_embeddings,
- **kwargs,
- )
|