| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # coding=utf-8
- # Copyright The HuggingFace team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ConvBERT model configuration"""
- from collections import OrderedDict
- from typing import Mapping
- from ...configuration_utils import PretrainedConfig
- from ...onnx import OnnxConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class ConvBertConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate an
- ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the ConvBERT
- [YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 30522):
- Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by
- the `inputs_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` are supported.
- hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- max_position_embeddings (`int`, *optional*, defaults to 512):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- type_vocab_size (`int`, *optional*, defaults to 2):
- The vocabulary size of the `token_type_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- head_ratio (`int`, *optional*, defaults to 2):
- Ratio gamma to reduce the number of attention heads.
- num_groups (`int`, *optional*, defaults to 1):
- The number of groups for grouped linear layers for ConvBert model
- conv_kernel_size (`int`, *optional*, defaults to 9):
- The size of the convolutional kernel.
- classifier_dropout (`float`, *optional*):
- The dropout ratio for the classification head.
- Example:
- ```python
- >>> from transformers import ConvBertConfig, ConvBertModel
- >>> # Initializing a ConvBERT convbert-base-uncased style configuration
- >>> configuration = ConvBertConfig()
- >>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration
- >>> model = ConvBertModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "convbert"
- def __init__(
- self,
- vocab_size=30522,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=2,
- initializer_range=0.02,
- layer_norm_eps=1e-12,
- pad_token_id=1,
- bos_token_id=0,
- eos_token_id=2,
- embedding_size=768,
- head_ratio=2,
- conv_kernel_size=9,
- num_groups=1,
- classifier_dropout=None,
- **kwargs,
- ):
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- **kwargs,
- )
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.intermediate_size = intermediate_size
- self.hidden_act = hidden_act
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.embedding_size = embedding_size
- self.head_ratio = head_ratio
- self.conv_kernel_size = conv_kernel_size
- self.num_groups = num_groups
- self.classifier_dropout = classifier_dropout
- # Copied from transformers.models.bert.configuration_bert.BertOnnxConfig
- class ConvBertOnnxConfig(OnnxConfig):
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- if self.task == "multiple-choice":
- dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
- else:
- dynamic_axis = {0: "batch", 1: "sequence"}
- return OrderedDict(
- [
- ("input_ids", dynamic_axis),
- ("attention_mask", dynamic_axis),
- ("token_type_ids", dynamic_axis),
- ]
- )
|