| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333 |
- # coding=utf-8
- # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch ConvBERT model."""
- import math
- import os
- from operator import attrgetter
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN, get_activation
- from ...modeling_outputs import (
- BaseModelOutputWithCrossAttentions,
- MaskedLMOutput,
- MultipleChoiceModelOutput,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel, SequenceSummary
- from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
- from .configuration_convbert import ConvBertConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base"
- _CONFIG_FOR_DOC = "ConvBertConfig"
- def load_tf_weights_in_convbert(model, config, tf_checkpoint_path):
- """Load tf checkpoints in a pytorch model."""
- try:
- import tensorflow as tf
- except ImportError:
- logger.error(
- "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions."
- )
- raise
- tf_path = os.path.abspath(tf_checkpoint_path)
- logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- tf_data = {}
- for name, shape in init_vars:
- logger.info(f"Loading TF weight {name} with shape {shape}")
- array = tf.train.load_variable(tf_path, name)
- tf_data[name] = array
- param_mapping = {
- "embeddings.word_embeddings.weight": "electra/embeddings/word_embeddings",
- "embeddings.position_embeddings.weight": "electra/embeddings/position_embeddings",
- "embeddings.token_type_embeddings.weight": "electra/embeddings/token_type_embeddings",
- "embeddings.LayerNorm.weight": "electra/embeddings/LayerNorm/gamma",
- "embeddings.LayerNorm.bias": "electra/embeddings/LayerNorm/beta",
- "embeddings_project.weight": "electra/embeddings_project/kernel",
- "embeddings_project.bias": "electra/embeddings_project/bias",
- }
- if config.num_groups > 1:
- group_dense_name = "g_dense"
- else:
- group_dense_name = "dense"
- for j in range(config.num_hidden_layers):
- param_mapping[f"encoder.layer.{j}.attention.self.query.weight"] = (
- f"electra/encoder/layer_{j}/attention/self/query/kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.query.bias"] = (
- f"electra/encoder/layer_{j}/attention/self/query/bias"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.key.weight"] = (
- f"electra/encoder/layer_{j}/attention/self/key/kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.key.bias"] = (
- f"electra/encoder/layer_{j}/attention/self/key/bias"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.value.weight"] = (
- f"electra/encoder/layer_{j}/attention/self/value/kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.value.bias"] = (
- f"electra/encoder/layer_{j}/attention/self/value/bias"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.key_conv_attn_layer.depthwise.weight"] = (
- f"electra/encoder/layer_{j}/attention/self/conv_attn_key/depthwise_kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.key_conv_attn_layer.pointwise.weight"] = (
- f"electra/encoder/layer_{j}/attention/self/conv_attn_key/pointwise_kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.key_conv_attn_layer.bias"] = (
- f"electra/encoder/layer_{j}/attention/self/conv_attn_key/bias"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.conv_kernel_layer.weight"] = (
- f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.conv_kernel_layer.bias"] = (
- f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/bias"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.conv_out_layer.weight"] = (
- f"electra/encoder/layer_{j}/attention/self/conv_attn_point/kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.self.conv_out_layer.bias"] = (
- f"electra/encoder/layer_{j}/attention/self/conv_attn_point/bias"
- )
- param_mapping[f"encoder.layer.{j}.attention.output.dense.weight"] = (
- f"electra/encoder/layer_{j}/attention/output/dense/kernel"
- )
- param_mapping[f"encoder.layer.{j}.attention.output.LayerNorm.weight"] = (
- f"electra/encoder/layer_{j}/attention/output/LayerNorm/gamma"
- )
- param_mapping[f"encoder.layer.{j}.attention.output.dense.bias"] = (
- f"electra/encoder/layer_{j}/attention/output/dense/bias"
- )
- param_mapping[f"encoder.layer.{j}.attention.output.LayerNorm.bias"] = (
- f"electra/encoder/layer_{j}/attention/output/LayerNorm/beta"
- )
- param_mapping[f"encoder.layer.{j}.intermediate.dense.weight"] = (
- f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/kernel"
- )
- param_mapping[f"encoder.layer.{j}.intermediate.dense.bias"] = (
- f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/bias"
- )
- param_mapping[f"encoder.layer.{j}.output.dense.weight"] = (
- f"electra/encoder/layer_{j}/output/{group_dense_name}/kernel"
- )
- param_mapping[f"encoder.layer.{j}.output.dense.bias"] = (
- f"electra/encoder/layer_{j}/output/{group_dense_name}/bias"
- )
- param_mapping[f"encoder.layer.{j}.output.LayerNorm.weight"] = (
- f"electra/encoder/layer_{j}/output/LayerNorm/gamma"
- )
- param_mapping[f"encoder.layer.{j}.output.LayerNorm.bias"] = f"electra/encoder/layer_{j}/output/LayerNorm/beta"
- for param in model.named_parameters():
- param_name = param[0]
- retriever = attrgetter(param_name)
- result = retriever(model)
- tf_name = param_mapping[param_name]
- value = torch.from_numpy(tf_data[tf_name])
- logger.info(f"TF: {tf_name}, PT: {param_name} ")
- if tf_name.endswith("/kernel"):
- if not tf_name.endswith("/intermediate/g_dense/kernel"):
- if not tf_name.endswith("/output/g_dense/kernel"):
- value = value.T
- if tf_name.endswith("/depthwise_kernel"):
- value = value.permute(1, 2, 0) # 2, 0, 1
- if tf_name.endswith("/pointwise_kernel"):
- value = value.permute(2, 1, 0) # 2, 1, 0
- if tf_name.endswith("/conv_attn_key/bias"):
- value = value.unsqueeze(-1)
- result.data = value
- return model
- class ConvBertEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super().__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- self.register_buffer(
- "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- ) -> torch.LongTensor:
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
- # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
- # issue #5664
- if token_type_ids is None:
- if hasattr(self, "token_type_ids"):
- buffered_token_type_ids = self.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- position_embeddings = self.position_embeddings(position_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + position_embeddings + token_type_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- class ConvBertPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = ConvBertConfig
- load_tf_weights = load_tf_weights_in_convbert
- base_model_prefix = "convbert"
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- class SeparableConv1D(nn.Module):
- """This class implements separable convolution, i.e. a depthwise and a pointwise layer"""
- def __init__(self, config, input_filters, output_filters, kernel_size, **kwargs):
- super().__init__()
- self.depthwise = nn.Conv1d(
- input_filters,
- input_filters,
- kernel_size=kernel_size,
- groups=input_filters,
- padding=kernel_size // 2,
- bias=False,
- )
- self.pointwise = nn.Conv1d(input_filters, output_filters, kernel_size=1, bias=False)
- self.bias = nn.Parameter(torch.zeros(output_filters, 1))
- self.depthwise.weight.data.normal_(mean=0.0, std=config.initializer_range)
- self.pointwise.weight.data.normal_(mean=0.0, std=config.initializer_range)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- x = self.depthwise(hidden_states)
- x = self.pointwise(x)
- x += self.bias
- return x
- class ConvBertSelfAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads})"
- )
- new_num_attention_heads = config.num_attention_heads // config.head_ratio
- if new_num_attention_heads < 1:
- self.head_ratio = config.num_attention_heads
- self.num_attention_heads = 1
- else:
- self.num_attention_heads = new_num_attention_heads
- self.head_ratio = config.head_ratio
- self.conv_kernel_size = config.conv_kernel_size
- if config.hidden_size % self.num_attention_heads != 0:
- raise ValueError("hidden_size should be divisible by num_attention_heads")
- self.attention_head_size = (config.hidden_size // self.num_attention_heads) // 2
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.key_conv_attn_layer = SeparableConv1D(
- config, config.hidden_size, self.all_head_size, self.conv_kernel_size
- )
- self.conv_kernel_layer = nn.Linear(self.all_head_size, self.num_attention_heads * self.conv_kernel_size)
- self.conv_out_layer = nn.Linear(config.hidden_size, self.all_head_size)
- self.unfold = nn.Unfold(
- kernel_size=[self.conv_kernel_size, 1], padding=[int((self.conv_kernel_size - 1) / 2), 0]
- )
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
- mixed_query_layer = self.query(hidden_states)
- batch_size = hidden_states.size(0)
- # If this is instantiated as a cross-attention module, the keys
- # and values come from an encoder; the attention mask needs to be
- # such that the encoder's padding tokens are not attended to.
- if encoder_hidden_states is not None:
- mixed_key_layer = self.key(encoder_hidden_states)
- mixed_value_layer = self.value(encoder_hidden_states)
- else:
- mixed_key_layer = self.key(hidden_states)
- mixed_value_layer = self.value(hidden_states)
- mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states.transpose(1, 2))
- mixed_key_conv_attn_layer = mixed_key_conv_attn_layer.transpose(1, 2)
- query_layer = self.transpose_for_scores(mixed_query_layer)
- key_layer = self.transpose_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
- conv_attn_layer = torch.multiply(mixed_key_conv_attn_layer, mixed_query_layer)
- conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer)
- conv_kernel_layer = torch.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1])
- conv_kernel_layer = torch.softmax(conv_kernel_layer, dim=1)
- conv_out_layer = self.conv_out_layer(hidden_states)
- conv_out_layer = torch.reshape(conv_out_layer, [batch_size, -1, self.all_head_size])
- conv_out_layer = conv_out_layer.transpose(1, 2).contiguous().unsqueeze(-1)
- conv_out_layer = nn.functional.unfold(
- conv_out_layer,
- kernel_size=[self.conv_kernel_size, 1],
- dilation=1,
- padding=[(self.conv_kernel_size - 1) // 2, 0],
- stride=1,
- )
- conv_out_layer = conv_out_layer.transpose(1, 2).reshape(
- batch_size, -1, self.all_head_size, self.conv_kernel_size
- )
- conv_out_layer = torch.reshape(conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size])
- conv_out_layer = torch.matmul(conv_out_layer, conv_kernel_layer)
- conv_out_layer = torch.reshape(conv_out_layer, [-1, self.all_head_size])
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in ConvBertModel forward() function)
- attention_scores = attention_scores + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- conv_out = torch.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size])
- context_layer = torch.cat([context_layer, conv_out], 2)
- # conv and context
- new_context_layer_shape = context_layer.size()[:-2] + (
- self.num_attention_heads * self.attention_head_size * 2,
- )
- context_layer = context_layer.view(*new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- return outputs
- class ConvBertSelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- class ConvBertAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.self = ConvBertSelfAttention(config)
- self.output = ConvBertSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.self.query = prune_linear_layer(self.self.query, index)
- self.self.key = prune_linear_layer(self.self.key, index)
- self.self.value = prune_linear_layer(self.self.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]:
- self_outputs = self.self(
- hidden_states,
- attention_mask,
- head_mask,
- encoder_hidden_states,
- output_attentions,
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- class GroupedLinearLayer(nn.Module):
- def __init__(self, input_size, output_size, num_groups):
- super().__init__()
- self.input_size = input_size
- self.output_size = output_size
- self.num_groups = num_groups
- self.group_in_dim = self.input_size // self.num_groups
- self.group_out_dim = self.output_size // self.num_groups
- self.weight = nn.Parameter(torch.empty(self.num_groups, self.group_in_dim, self.group_out_dim))
- self.bias = nn.Parameter(torch.empty(output_size))
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- batch_size = list(hidden_states.size())[0]
- x = torch.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim])
- x = x.permute(1, 0, 2)
- x = torch.matmul(x, self.weight)
- x = x.permute(1, 0, 2)
- x = torch.reshape(x, [batch_size, -1, self.output_size])
- x = x + self.bias
- return x
- class ConvBertIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- if config.num_groups == 1:
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- else:
- self.dense = GroupedLinearLayer(
- input_size=config.hidden_size, output_size=config.intermediate_size, num_groups=config.num_groups
- )
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- class ConvBertOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- if config.num_groups == 1:
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- else:
- self.dense = GroupedLinearLayer(
- input_size=config.intermediate_size, output_size=config.hidden_size, num_groups=config.num_groups
- )
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- class ConvBertLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = ConvBertAttention(config)
- self.is_decoder = config.is_decoder
- self.add_cross_attention = config.add_cross_attention
- if self.add_cross_attention:
- if not self.is_decoder:
- raise TypeError(f"{self} should be used as a decoder model if cross attention is added")
- self.crossattention = ConvBertAttention(config)
- self.intermediate = ConvBertIntermediate(config)
- self.output = ConvBertOutput(config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]:
- self_attention_outputs = self.attention(
- hidden_states,
- attention_mask,
- head_mask,
- output_attentions=output_attentions,
- )
- attention_output = self_attention_outputs[0]
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- if self.is_decoder and encoder_hidden_states is not None:
- if not hasattr(self, "crossattention"):
- raise AttributeError(
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
- " by setting `config.add_cross_attention=True`"
- )
- cross_attention_outputs = self.crossattention(
- attention_output,
- encoder_attention_mask,
- head_mask,
- encoder_hidden_states,
- output_attentions,
- )
- attention_output = cross_attention_outputs[0]
- outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
- layer_output = apply_chunking_to_forward(
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
- )
- outputs = (layer_output,) + outputs
- return outputs
- def feed_forward_chunk(self, attention_output):
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
- class ConvBertEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([ConvBertLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = False,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(
- hidden_states,
- attention_mask,
- layer_head_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- output_attentions,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if self.config.add_cross_attention:
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
- if v is not None
- )
- return BaseModelOutputWithCrossAttentions(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- cross_attentions=all_cross_attentions,
- )
- class ConvBertPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- if isinstance(config.hidden_act, str):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- CONVBERT_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
- it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- CONVBERT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.",
- CONVBERT_START_DOCSTRING,
- )
- class ConvBertModel(ConvBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.embeddings = ConvBertEmbeddings(config)
- if config.embedding_size != config.hidden_size:
- self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
- self.encoder = ConvBertEncoder(config)
- self.config = config
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, value):
- self.embeddings.word_embeddings = value
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- batch_size, seq_length = input_shape
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- if token_type_ids is None:
- if hasattr(self.embeddings, "token_type_ids"):
- buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
- token_type_ids = buffered_token_type_ids_expanded
- else:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- hidden_states = self.embeddings(
- input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
- )
- if hasattr(self, "embeddings_project"):
- hidden_states = self.embeddings_project(hidden_states)
- hidden_states = self.encoder(
- hidden_states,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- return hidden_states
- class ConvBertGeneratorPredictions(nn.Module):
- """Prediction module for the generator, made up of two dense layers."""
- def __init__(self, config):
- super().__init__()
- self.activation = get_activation("gelu")
- self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
- self.dense = nn.Linear(config.hidden_size, config.embedding_size)
- def forward(self, generator_hidden_states: torch.FloatTensor) -> torch.FloatTensor:
- hidden_states = self.dense(generator_hidden_states)
- hidden_states = self.activation(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- @add_start_docstrings("""ConvBERT Model with a `language modeling` head on top.""", CONVBERT_START_DOCSTRING)
- class ConvBertForMaskedLM(ConvBertPreTrainedModel):
- _tied_weights_keys = ["generator.lm_head.weight"]
- def __init__(self, config):
- super().__init__(config)
- self.convbert = ConvBertModel(config)
- self.generator_predictions = ConvBertGeneratorPredictions(config)
- self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.generator_lm_head
- def set_output_embeddings(self, word_embeddings):
- self.generator_lm_head = word_embeddings
- @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MaskedLMOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, MaskedLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- generator_hidden_states = self.convbert(
- input_ids,
- attention_mask,
- token_type_ids,
- position_ids,
- head_mask,
- inputs_embeds,
- output_attentions,
- output_hidden_states,
- return_dict,
- )
- generator_sequence_output = generator_hidden_states[0]
- prediction_scores = self.generator_predictions(generator_sequence_output)
- prediction_scores = self.generator_lm_head(prediction_scores)
- loss = None
- # Masked language modeling softmax layer
- if labels is not None:
- loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
- loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (prediction_scores,) + generator_hidden_states[1:]
- return ((loss,) + output) if loss is not None else output
- return MaskedLMOutput(
- loss=loss,
- logits=prediction_scores,
- hidden_states=generator_hidden_states.hidden_states,
- attentions=generator_hidden_states.attentions,
- )
- class ConvBertClassificationHead(nn.Module):
- """Head for sentence-level classification tasks."""
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- classifier_dropout = (
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
- )
- self.dropout = nn.Dropout(classifier_dropout)
- self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
- self.config = config
- def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor:
- x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
- x = self.dropout(x)
- x = self.dense(x)
- x = ACT2FN[self.config.hidden_act](x)
- x = self.dropout(x)
- x = self.out_proj(x)
- return x
- @add_start_docstrings(
- """
- ConvBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
- pooled output) e.g. for GLUE tasks.
- """,
- CONVBERT_START_DOCSTRING,
- )
- class ConvBertForSequenceClassification(ConvBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.config = config
- self.convbert = ConvBertModel(config)
- self.classifier = ConvBertClassificationHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=SequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.convbert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
- softmax) e.g. for RocStories/SWAG tasks.
- """,
- CONVBERT_START_DOCSTRING,
- )
- class ConvBertForMultipleChoice(ConvBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.convbert = ConvBertModel(config)
- self.sequence_summary = SequenceSummary(config)
- self.classifier = nn.Linear(config.hidden_size, 1)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(
- CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
- )
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MultipleChoiceModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, MultipleChoiceModelOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
- num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
- `input_ids` above)
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
- input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
- attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
- token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
- position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
- inputs_embeds = (
- inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
- if inputs_embeds is not None
- else None
- )
- outputs = self.convbert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- pooled_output = self.sequence_summary(sequence_output)
- logits = self.classifier(pooled_output)
- reshaped_logits = logits.view(-1, num_choices)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(reshaped_logits, labels)
- if not return_dict:
- output = (reshaped_logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return MultipleChoiceModelOutput(
- loss=loss,
- logits=reshaped_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- CONVBERT_START_DOCSTRING,
- )
- class ConvBertForTokenClassification(ConvBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.convbert = ConvBertModel(config)
- classifier_dropout = (
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
- )
- self.dropout = nn.Dropout(classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.convbert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
- layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- CONVBERT_START_DOCSTRING,
- )
- class ConvBertForQuestionAnswering(ConvBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.convbert = ConvBertModel(config)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=QuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.convbert(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[1:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|