| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548 |
- # coding=utf-8
- # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch ConvNext model."""
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BackboneOutput,
- BaseModelOutputWithNoAttention,
- BaseModelOutputWithPoolingAndNoAttention,
- ImageClassifierOutputWithNoAttention,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from ...utils.backbone_utils import BackboneMixin
- from .configuration_convnext import ConvNextConfig
- logger = logging.get_logger(__name__)
- # General docstring
- _CONFIG_FOR_DOC = "ConvNextConfig"
- # Base docstring
- _CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"
- _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
- # Image classification docstring
- _IMAGE_CLASS_CHECKPOINT = "facebook/convnext-tiny-224"
- _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
- # Copied from transformers.models.beit.modeling_beit.drop_path
- def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
- """
- Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
- however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
- layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
- argument.
- """
- if drop_prob == 0.0 or not training:
- return input
- keep_prob = 1 - drop_prob
- shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
- random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
- random_tensor.floor_() # binarize
- output = input.div(keep_prob) * random_tensor
- return output
- # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNext
- class ConvNextDropPath(nn.Module):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
- def __init__(self, drop_prob: Optional[float] = None) -> None:
- super().__init__()
- self.drop_prob = drop_prob
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- return drop_path(hidden_states, self.drop_prob, self.training)
- def extra_repr(self) -> str:
- return "p={}".format(self.drop_prob)
- class ConvNextLayerNorm(nn.Module):
- r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
- The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
- width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
- """
- def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
- super().__init__()
- self.weight = nn.Parameter(torch.ones(normalized_shape))
- self.bias = nn.Parameter(torch.zeros(normalized_shape))
- self.eps = eps
- self.data_format = data_format
- if self.data_format not in ["channels_last", "channels_first"]:
- raise NotImplementedError(f"Unsupported data format: {self.data_format}")
- self.normalized_shape = (normalized_shape,)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- if self.data_format == "channels_last":
- x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
- elif self.data_format == "channels_first":
- input_dtype = x.dtype
- x = x.float()
- u = x.mean(1, keepdim=True)
- s = (x - u).pow(2).mean(1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.eps)
- x = x.to(dtype=input_dtype)
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
- return x
- class ConvNextEmbeddings(nn.Module):
- """This class is comparable to (and inspired by) the SwinEmbeddings class
- found in src/transformers/models/swin/modeling_swin.py.
- """
- def __init__(self, config):
- super().__init__()
- self.patch_embeddings = nn.Conv2d(
- config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
- )
- self.layernorm = ConvNextLayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
- self.num_channels = config.num_channels
- def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
- num_channels = pixel_values.shape[1]
- if num_channels != self.num_channels:
- raise ValueError(
- "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
- )
- embeddings = self.patch_embeddings(pixel_values)
- embeddings = self.layernorm(embeddings)
- return embeddings
- class ConvNextLayer(nn.Module):
- """This corresponds to the `Block` class in the original implementation.
- There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
- H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
- The authors used (2) as they find it slightly faster in PyTorch.
- Args:
- config ([`ConvNextConfig`]): Model configuration class.
- dim (`int`): Number of input channels.
- drop_path (`float`): Stochastic depth rate. Default: 0.0.
- """
- def __init__(self, config, dim, drop_path=0):
- super().__init__()
- self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
- self.layernorm = ConvNextLayerNorm(dim, eps=1e-6)
- self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
- self.act = ACT2FN[config.hidden_act]
- self.pwconv2 = nn.Linear(4 * dim, dim)
- self.layer_scale_parameter = (
- nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
- if config.layer_scale_init_value > 0
- else None
- )
- self.drop_path = ConvNextDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- input = hidden_states
- x = self.dwconv(hidden_states)
- x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
- x = self.layernorm(x)
- x = self.pwconv1(x)
- x = self.act(x)
- x = self.pwconv2(x)
- if self.layer_scale_parameter is not None:
- x = self.layer_scale_parameter * x
- x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
- x = input + self.drop_path(x)
- return x
- class ConvNextStage(nn.Module):
- """ConvNeXT stage, consisting of an optional downsampling layer + multiple residual blocks.
- Args:
- config ([`ConvNextConfig`]): Model configuration class.
- in_channels (`int`): Number of input channels.
- out_channels (`int`): Number of output channels.
- depth (`int`): Number of residual blocks.
- drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
- """
- def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
- super().__init__()
- if in_channels != out_channels or stride > 1:
- self.downsampling_layer = nn.Sequential(
- ConvNextLayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
- nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
- )
- else:
- self.downsampling_layer = nn.Identity()
- drop_path_rates = drop_path_rates or [0.0] * depth
- self.layers = nn.Sequential(
- *[ConvNextLayer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
- )
- def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
- hidden_states = self.downsampling_layer(hidden_states)
- hidden_states = self.layers(hidden_states)
- return hidden_states
- class ConvNextEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.stages = nn.ModuleList()
- drop_path_rates = [
- x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
- ]
- prev_chs = config.hidden_sizes[0]
- for i in range(config.num_stages):
- out_chs = config.hidden_sizes[i]
- stage = ConvNextStage(
- config,
- in_channels=prev_chs,
- out_channels=out_chs,
- stride=2 if i > 0 else 1,
- depth=config.depths[i],
- drop_path_rates=drop_path_rates[i],
- )
- self.stages.append(stage)
- prev_chs = out_chs
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- output_hidden_states: Optional[bool] = False,
- return_dict: Optional[bool] = True,
- ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
- all_hidden_states = () if output_hidden_states else None
- for i, layer_module in enumerate(self.stages):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- hidden_states = layer_module(hidden_states)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
- return BaseModelOutputWithNoAttention(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- )
- class ConvNextPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = ConvNextConfig
- base_model_prefix = "convnext"
- main_input_name = "pixel_values"
- _no_split_modules = ["ConvNextLayer"]
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv2d)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- CONVNEXT_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- CONVNEXT_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
- [`ConvNextImageProcessor.__call__`] for details.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare ConvNext model outputting raw features without any specific head on top.",
- CONVNEXT_START_DOCSTRING,
- )
- class ConvNextModel(ConvNextPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.config = config
- self.embeddings = ConvNextEmbeddings(config)
- self.encoder = ConvNextEncoder(config)
- # final layernorm layer
- self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPoolingAndNoAttention,
- config_class=_CONFIG_FOR_DOC,
- modality="vision",
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def forward(
- self,
- pixel_values: torch.FloatTensor = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- embedding_output = self.embeddings(pixel_values)
- encoder_outputs = self.encoder(
- embedding_output,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- last_hidden_state = encoder_outputs[0]
- # global average pooling, (N, C, H, W) -> (N, C)
- pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndNoAttention(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- )
- @add_start_docstrings(
- """
- ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
- ImageNet.
- """,
- CONVNEXT_START_DOCSTRING,
- )
- class ConvNextForImageClassification(ConvNextPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.convnext = ConvNextModel(config)
- # Classifier head
- self.classifier = (
- nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
- )
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
- output_type=ImageClassifierOutputWithNoAttention,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
- )
- def forward(
- self,
- pixel_values: torch.FloatTensor = None,
- labels: Optional[torch.LongTensor] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.convnext(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
- pooled_output = outputs.pooler_output if return_dict else outputs[1]
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return ImageClassifierOutputWithNoAttention(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- )
- @add_start_docstrings(
- """
- ConvNeXt backbone, to be used with frameworks like DETR and MaskFormer.
- """,
- CONVNEXT_START_DOCSTRING,
- )
- class ConvNextBackbone(ConvNextPreTrainedModel, BackboneMixin):
- def __init__(self, config):
- super().__init__(config)
- super()._init_backbone(config)
- self.embeddings = ConvNextEmbeddings(config)
- self.encoder = ConvNextEncoder(config)
- self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
- # Add layer norms to hidden states of out_features
- hidden_states_norms = {}
- for stage, num_channels in zip(self._out_features, self.channels):
- hidden_states_norms[stage] = ConvNextLayerNorm(num_channels, data_format="channels_first")
- self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
- # initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- pixel_values: torch.Tensor,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> BackboneOutput:
- """
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor, AutoBackbone
- >>> import torch
- >>> from PIL import Image
- >>> import requests
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
- >>> model = AutoBackbone.from_pretrained("facebook/convnext-tiny-224")
- >>> inputs = processor(image, return_tensors="pt")
- >>> outputs = model(**inputs)
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- embedding_output = self.embeddings(pixel_values)
- outputs = self.encoder(
- embedding_output,
- output_hidden_states=True,
- return_dict=return_dict,
- )
- hidden_states = outputs.hidden_states if return_dict else outputs[1]
- feature_maps = ()
- for stage, hidden_state in zip(self.stage_names, hidden_states):
- if stage in self.out_features:
- hidden_state = self.hidden_states_norms[stage](hidden_state)
- feature_maps += (hidden_state,)
- if not return_dict:
- output = (feature_maps,)
- if output_hidden_states:
- output += (hidden_states,)
- return output
- return BackboneOutput(
- feature_maps=feature_maps,
- hidden_states=hidden_states if output_hidden_states else None,
- attentions=None,
- )
|