| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # coding=utf-8
- # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ConvNeXTV2 model configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
- logger = logging.get_logger(__name__)
- class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an
- ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2
- [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- num_channels (`int`, *optional*, defaults to 3):
- The number of input channels.
- patch_size (`int`, *optional*, defaults to 4):
- Patch size to use in the patch embedding layer.
- num_stages (`int`, *optional*, defaults to 4):
- The number of stages in the model.
- hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`):
- Dimensionality (hidden size) at each stage.
- depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`):
- Depth (number of blocks) for each stage.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
- `"selu"` and `"gelu_new"` are supported.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- drop_path_rate (`float`, *optional*, defaults to 0.0):
- The drop rate for stochastic depth.
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- out_features (`List[str]`, *optional*):
- If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
- (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
- corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
- same order as defined in the `stage_names` attribute.
- out_indices (`List[int]`, *optional*):
- If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
- many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
- If unset and `out_features` is unset, will default to the last stage. Must be in the
- same order as defined in the `stage_names` attribute.
- Example:
- ```python
- >>> from transformers import ConvNeXTV2Config, ConvNextV2Model
- >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration
- >>> configuration = ConvNeXTV2Config()
- >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration
- >>> model = ConvNextV2Model(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "convnextv2"
- def __init__(
- self,
- num_channels=3,
- patch_size=4,
- num_stages=4,
- hidden_sizes=None,
- depths=None,
- hidden_act="gelu",
- initializer_range=0.02,
- layer_norm_eps=1e-12,
- drop_path_rate=0.0,
- image_size=224,
- out_features=None,
- out_indices=None,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.num_channels = num_channels
- self.patch_size = patch_size
- self.num_stages = num_stages
- self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
- self.depths = [3, 3, 9, 3] if depths is None else depths
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.drop_path_rate = drop_path_rate
- self.image_size = image_size
- self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
- self._out_features, self._out_indices = get_aligned_output_features_output_indices(
- out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
- )
|