| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- # coding=utf-8
- # Copyright 2018 Salesforce and HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Salesforce CTRL configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class CTRLConfig(PretrainedConfig):
- """
- This is the configuration class to store the configuration of a [`CTRLModel`] or a [`TFCTRLModel`]. It is used to
- instantiate a CTRL model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the
- [Salesforce/ctrl](https://huggingface.co/Salesforce/ctrl) architecture from SalesForce.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 246534):
- Vocabulary size of the CTRL model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`CTRLModel`] or [`TFCTRLModel`].
- n_positions (`int`, *optional*, defaults to 256):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- n_embd (`int`, *optional*, defaults to 1280):
- Dimensionality of the embeddings and hidden states.
- dff (`int`, *optional*, defaults to 8192):
- Dimensionality of the inner dimension of the feed forward networks (FFN).
- n_layer (`int`, *optional*, defaults to 48):
- Number of hidden layers in the Transformer encoder.
- n_head (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer encoder.
- resid_pdrop (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- embd_pdrop (`int`, *optional*, defaults to 0.1):
- The dropout ratio for the embeddings.
- layer_norm_epsilon (`float`, *optional*, defaults to 1e-06):
- The epsilon to use in the layer normalization layers
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models).
- Examples:
- ```python
- >>> from transformers import CTRLConfig, CTRLModel
- >>> # Initializing a CTRL configuration
- >>> configuration = CTRLConfig()
- >>> # Initializing a model (with random weights) from the configuration
- >>> model = CTRLModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "ctrl"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {
- "max_position_embeddings": "n_positions",
- "hidden_size": "n_embd",
- "num_attention_heads": "n_head",
- "num_hidden_layers": "n_layer",
- }
- def __init__(
- self,
- vocab_size=246534,
- n_positions=256,
- n_embd=1280,
- dff=8192,
- n_layer=48,
- n_head=16,
- resid_pdrop=0.1,
- embd_pdrop=0.1,
- layer_norm_epsilon=1e-6,
- initializer_range=0.02,
- use_cache=True,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.n_positions = n_positions
- self.n_embd = n_embd
- self.n_layer = n_layer
- self.n_head = n_head
- self.dff = dff
- self.resid_pdrop = resid_pdrop
- self.embd_pdrop = embd_pdrop
- self.layer_norm_epsilon = layer_norm_epsilon
- self.initializer_range = initializer_range
- self.use_cache = use_cache
- super().__init__(**kwargs)
|