| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841 |
- # coding=utf-8
- # Copyright 2018 Salesforce and HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch CTRL model."""
- from typing import Optional, Tuple, Union
- import numpy as np
- import torch
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...generation import GenerationMixin
- from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutput
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
- from .configuration_ctrl import CTRLConfig
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "CTRLConfig"
- def angle_defn(pos, i, d_model_size):
- angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size)
- return pos * angle_rates
- def positional_encoding(position, d_model_size, dtype):
- # create the sinusoidal pattern for the positional encoding
- angle_rads = angle_defn(
- torch.arange(position, dtype=torch.int64).to(dtype).unsqueeze(1),
- torch.arange(d_model_size, dtype=torch.int64).to(dtype).unsqueeze(0),
- d_model_size,
- )
- sines = torch.sin(angle_rads[:, 0::2])
- cosines = torch.cos(angle_rads[:, 1::2])
- pos_encoding = torch.cat([sines, cosines], dim=-1)
- return pos_encoding
- def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None):
- # calculate attention
- matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2))
- dk = k.shape[-1]
- scaled_attention_logits = matmul_qk / np.sqrt(dk)
- if mask is not None:
- nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1)
- scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4
- if attention_mask is not None:
- # Apply the attention mask
- scaled_attention_logits = scaled_attention_logits + attention_mask
- attention_weights = torch.softmax(scaled_attention_logits, dim=-1)
- # Mask heads if we want to
- if head_mask is not None:
- attention_weights = attention_weights * head_mask
- output = torch.matmul(attention_weights, v)
- return output, attention_weights
- class MultiHeadAttention(nn.Module):
- def __init__(self, d_model_size, num_heads):
- super().__init__()
- self.num_heads = num_heads
- self.d_model_size = d_model_size
- self.depth = int(d_model_size / self.num_heads)
- self.Wq = nn.Linear(d_model_size, d_model_size)
- self.Wk = nn.Linear(d_model_size, d_model_size)
- self.Wv = nn.Linear(d_model_size, d_model_size)
- self.dense = nn.Linear(d_model_size, d_model_size)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- attention_head_size = self.d_model_size // self.num_heads
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, attention_head_size, self.pruned_heads)
- # Prune linear layers
- self.Wq = prune_linear_layer(self.Wq, index)
- self.Wk = prune_linear_layer(self.Wk, index)
- self.Wv = prune_linear_layer(self.Wv, index)
- self.dense = prune_linear_layer(self.dense, index, dim=1)
- # Update hyper params
- self.num_heads = self.num_heads - len(heads)
- self.d_model_size = attention_head_size * self.num_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def split_into_heads(self, x, batch_size):
- x = x.reshape(batch_size, -1, self.num_heads, self.depth)
- return x.permute([0, 2, 1, 3])
- def forward(
- self,
- v,
- k,
- q,
- mask,
- layer_past=None,
- attention_mask=None,
- head_mask=None,
- use_cache=False,
- output_attentions=False,
- ):
- batch_size = q.shape[0]
- q = self.Wq(q)
- k = self.Wk(k)
- v = self.Wv(v)
- q = self.split_into_heads(q, batch_size)
- k = self.split_into_heads(k, batch_size)
- v = self.split_into_heads(v, batch_size)
- if layer_past is not None:
- past_key, past_value = layer_past[0], layer_past[1]
- k = torch.cat((past_key, k), dim=-2)
- v = torch.cat((past_value, v), dim=-2)
- if use_cache is True:
- present = torch.stack((k, v))
- else:
- present = (None,)
- output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask)
- scaled_attention = output[0].permute([0, 2, 1, 3])
- attn = output[1]
- original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size)
- output = self.dense(original_size_attention)
- outputs = (output, present)
- if output_attentions:
- outputs = outputs + (attn,)
- return outputs
- def point_wise_feed_forward_network(d_model_size, dff):
- return nn.Sequential(nn.Linear(d_model_size, dff), nn.ReLU(), nn.Linear(dff, d_model_size))
- class EncoderLayer(nn.Module):
- def __init__(self, d_model_size, num_heads, dff, rate=0.1):
- super().__init__()
- self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads)
- self.ffn = point_wise_feed_forward_network(d_model_size, dff)
- self.layernorm1 = nn.LayerNorm(d_model_size, eps=1e-6)
- self.layernorm2 = nn.LayerNorm(d_model_size, eps=1e-6)
- self.dropout1 = nn.Dropout(rate)
- self.dropout2 = nn.Dropout(rate)
- def forward(
- self, x, mask, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False
- ):
- normed = self.layernorm1(x)
- attn_outputs = self.multi_head_attention(
- normed,
- normed,
- normed,
- mask,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- attn_output = attn_outputs[0]
- attn_output = self.dropout1(attn_output)
- out1 = x + attn_output
- out2 = self.layernorm2(out1)
- ffn_output = self.ffn(out2)
- ffn_output = self.dropout2(ffn_output)
- out2 = out1 + ffn_output
- outputs = (out2,) + attn_outputs[1:]
- return outputs
- class CTRLPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = CTRLConfig
- base_model_prefix = "transformer"
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, (nn.Linear, Conv1D)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- CTRL_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`CTRLConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- CTRL_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]`
- (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
- If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as
- `input_ids`.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
- [`PreTrainedTokenizer.encode`] for details.
- [What are input IDs?](../glossary#input-ids)
- past_key_values (`Tuple[Tuple[torch.FloatTensor]]` of length `config.n_layers`):
- Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
- their past given to this model should not be passed as input ids as they have already been computed.
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.",
- CTRL_START_DOCSTRING,
- )
- class CTRLModel(CTRLPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.d_model_size = config.n_embd
- self.num_layers = config.n_layer
- self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float)
- self.w = nn.Embedding(config.vocab_size, config.n_embd)
- self.dropout = nn.Dropout(config.embd_pdrop)
- self.h = nn.ModuleList(
- [EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop) for _ in range(config.n_layer)]
- )
- self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.w
- def set_input_embeddings(self, new_embeddings):
- self.w = new_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
- """
- for layer, heads in heads_to_prune.items():
- self.h[layer].multi_head_attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
- r"""
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, CTRLModel
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
- >>> model = CTRLModel.from_pretrained("Salesforce/ctrl")
- >>> # CTRL was trained with control codes as the first token
- >>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
- >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- >>> list(last_hidden_states.shape)
- [1, 5, 1280]
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- batch_size = input_ids.shape[0]
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- batch_size = inputs_embeds.shape[0]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if past_key_values is None:
- past_length = 0
- past_key_values = tuple([None] * len(self.h))
- else:
- past_length = past_key_values[0][0].size(-2)
- if position_ids is None:
- position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
- position_ids = position_ids.unsqueeze(0)
- # Attention mask.
- if attention_mask is not None:
- if batch_size <= 0:
- raise ValueError("batch_size has to be defined and > 0")
- attention_mask = attention_mask.view(batch_size, -1)
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and the dtype's smallest value for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
- attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
- # Prepare head mask if needed
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
- if token_type_ids is not None:
- token_type_ids = token_type_ids.view(-1, input_shape[-1])
- token_type_embeds = self.w(token_type_ids)
- token_type_embeds *= np.sqrt(self.d_model_size)
- else:
- token_type_embeds = 0
- if inputs_embeds is None:
- inputs_embeds = self.w(input_ids)
- # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
- seq_len = input_shape[-1]
- mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device)
- inputs_embeds *= np.sqrt(self.d_model_size)
- # `self.pos_encoding` won't be sent to the correct device along the model, so we do it manually.
- self.pos_encoding = self.pos_encoding.to(device)
- pos_embeds = self.pos_encoding[position_ids, :]
- hidden_states = inputs_embeds + pos_embeds + token_type_embeds
- hidden_states = self.dropout(hidden_states)
- presents = () if use_cache else None
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- for i, (h, layer_past) in enumerate(zip(self.h, past_key_values)):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- outputs = h(
- hidden_states,
- mask,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask[i],
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- hidden_states, present = outputs[:2]
- if use_cache is True:
- presents = presents + (present,)
- if output_attentions:
- all_attentions += (outputs[2],)
- hidden_states = self.layernorm(hidden_states)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
- return BaseModelOutputWithPast(
- last_hidden_state=hidden_states,
- past_key_values=presents,
- hidden_states=all_hidden_states,
- attentions=all_attentions,
- )
- @add_start_docstrings(
- """
- The CTRL Model transformer with a language modeling head on top (linear layer with weights tied to the input
- embeddings).
- """,
- CTRL_START_DOCSTRING,
- )
- class CTRLLMHeadModel(CTRLPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config):
- super().__init__(config)
- self.transformer = CTRLModel(config)
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- Returns:
- Example:
- ```python
- >>> import torch
- >>> from transformers import AutoTokenizer, CTRLLMHeadModel
- >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
- >>> model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl")
- >>> # CTRL was trained with control codes as the first token
- >>> inputs = tokenizer("Wikipedia The llama is", return_tensors="pt")
- >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()
- >>> sequence_ids = model.generate(inputs["input_ids"])
- >>> sequences = tokenizer.batch_decode(sequence_ids)
- >>> sequences
- ['Wikipedia The llama is a member of the family Bovidae. It is native to the Andes of Peru,']
- >>> outputs = model(**inputs, labels=inputs["input_ids"])
- >>> round(outputs.loss.item(), 2)
- 9.21
- >>> list(outputs.logits.shape)
- [1, 5, 246534]
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- lm_logits = self.lm_head(hidden_states)
- loss = None
- if labels is not None:
- # Shift so that tokens < n predict n
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
- if not return_dict:
- output = (lm_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return CausalLMOutputWithPast(
- loss=loss,
- logits=lm_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_cache=None, **kwargs):
- # Overwritten -- inputs_embeds not working properly
- # only last tokens for inputs_ids if past is defined in kwargs
- if past_key_values is not None:
- past_length = past_key_values[0][0].shape[2]
- # Some generation methods already pass only the last input ID
- if input_ids.shape[1] > past_length:
- remove_prefix_length = past_length
- else:
- # Default to old behavior: keep only final ID
- remove_prefix_length = input_ids.shape[1] - 1
- input_ids = input_ids[:, remove_prefix_length:]
- return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": use_cache}
- @staticmethod
- def _reorder_cache(
- past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
- ) -> Tuple[Tuple[torch.Tensor]]:
- """
- This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
- [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
- beam_idx at every generation step.
- """
- return tuple(
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
- for layer_past in past_key_values
- )
- @add_start_docstrings(
- """
- The CTRL Model transformer with a sequence classification head on top (linear layer).
- [`CTRLForSequenceClassification`] uses the last token in order to do the classification, as other causal models
- (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last
- token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in
- each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
- guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last
- value in each row of the batch).
- """,
- CTRL_START_DOCSTRING,
- )
- class CTRLForSequenceClassification(CTRLPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = CTRLModel(config)
- self.classifier = nn.Linear(config.n_embd, self.num_labels, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- Returns:
- Example of single-label classification:
- ```python
- >>> import torch
- >>> from transformers import AutoTokenizer, CTRLForSequenceClassification
- >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
- >>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl")
- >>> # CTRL was trained with control codes as the first token
- >>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
- >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> predicted_class_id = logits.argmax().item()
- >>> model.config.id2label[predicted_class_id]
- 'LABEL_0'
- ```
- ```python
- >>> import torch
- >>> torch.manual_seed(42) # doctest: +IGNORE_RESULT
- >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
- >>> num_labels = len(model.config.id2label)
- >>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)
- >>> labels = torch.tensor(1)
- >>> loss = model(**inputs, labels=labels).loss
- >>> round(loss.item(), 2)
- 0.93
- ```
- Example of multi-label classification:
- ```python
- >>> import torch
- >>> from transformers import AutoTokenizer, CTRLForSequenceClassification
- >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
- >>> model = CTRLForSequenceClassification.from_pretrained(
- ... "Salesforce/ctrl", problem_type="multi_label_classification"
- ... )
- >>> # CTRL was trained with control codes as the first token
- >>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
- >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> predicted_class_id = logits.argmax().item()
- >>> model.config.id2label[predicted_class_id]
- 'LABEL_0'
- ```
- ```python
- >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
- >>> num_labels = len(model.config.id2label)
- >>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)
- >>> num_labels = len(model.config.id2label)
- >>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to(
- ... torch.float
- ... )
- >>> loss = model(**inputs, labels=labels).loss
- >>> loss.backward() # doctest: +IGNORE_RESULT
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.classifier(hidden_states)
- if input_ids is not None:
- batch_size, sequence_length = input_ids.shape[:2]
- else:
- batch_size, sequence_length = inputs_embeds.shape[:2]
- if self.config.pad_token_id is None and batch_size != 1:
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
- if self.config.pad_token_id is None:
- sequence_lengths = -1
- else:
- if input_ids is not None:
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
- sequence_lengths = sequence_lengths.to(logits.device)
- else:
- sequence_lengths = -1
- logger.warning_once(
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
- )
- pooled_logits = logits[range(batch_size), sequence_lengths]
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(pooled_logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(pooled_logits, labels)
- if not return_dict:
- output = (pooled_logits,) + transformer_outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=pooled_logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
|