| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- # coding=utf-8
- # Copyright 2018 Salesforce and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for Salesforce CTRL."""
- import json
- import os
- from typing import Optional, Tuple
- import regex as re
- from ...tokenization_utils import PreTrainedTokenizer
- from ...utils import logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {
- "vocab_file": "vocab.json",
- "merges_file": "merges.txt",
- }
- CONTROL_CODES = {
- "Pregnancy": 168629,
- "Christianity": 7675,
- "Explain": 106423,
- "Fitness": 63440,
- "Saving": 63163,
- "Ask": 27171,
- "Ass": 95985,
- "Joke": 163509,
- "Questions": 45622,
- "Thoughts": 49605,
- "Retail": 52342,
- "Feminism": 164338,
- "Writing": 11992,
- "Atheism": 192263,
- "Netflix": 48616,
- "Computing": 39639,
- "Opinion": 43213,
- "Alone": 44967,
- "Funny": 58917,
- "Gaming": 40358,
- "Human": 4088,
- "India": 1331,
- "Joker": 77138,
- "Diet": 36206,
- "Legal": 11859,
- "Norman": 4939,
- "Tip": 72689,
- "Weight": 52343,
- "Movies": 46273,
- "Running": 23425,
- "Science": 2090,
- "Horror": 37793,
- "Confession": 60572,
- "Finance": 12250,
- "Politics": 16360,
- "Scary": 191985,
- "Support": 12654,
- "Technologies": 32516,
- "Teenage": 66160,
- "Event": 32769,
- "Learned": 67460,
- "Notion": 182770,
- "Wikipedia": 37583,
- "Books": 6665,
- "Extract": 76050,
- "Confessions": 102701,
- "Conspiracy": 75932,
- "Links": 63674,
- "Narcissus": 150425,
- "Relationship": 54766,
- "Relationships": 134796,
- "Reviews": 41671,
- "News": 4256,
- "Translation": 26820,
- "multilingual": 128406,
- }
- def get_pairs(word):
- """
- Return set of symbol pairs in a word.
- Word is represented as tuple of symbols (symbols being variable-length strings).
- """
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- pairs = set(pairs)
- return pairs
- class CTRLTokenizer(PreTrainedTokenizer):
- """
- Construct a CTRL tokenizer. Based on Byte-Pair-Encoding.
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- control_codes = CONTROL_CODES
- def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
- with open(vocab_file, encoding="utf-8") as vocab_handle:
- self.encoder = json.load(vocab_handle)
- self.decoder = {v: k for k, v in self.encoder.items()}
- with open(merges_file, encoding="utf-8") as merges_handle:
- merges = merges_handle.read().split("\n")[1:-1]
- merges = [tuple(merge.split()) for merge in merges]
- self.bpe_ranks = dict(zip(merges, range(len(merges))))
- self.cache = {}
- super().__init__(unk_token=unk_token, **kwargs)
- @property
- def vocab_size(self):
- return len(self.encoder)
- def get_vocab(self):
- return dict(self.encoder, **self.added_tokens_encoder)
- def bpe(self, token):
- if token in self.cache:
- return self.cache[token]
- word = tuple(token)
- word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
- pairs = get_pairs(word)
- if not pairs:
- return token
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- except ValueError:
- new_word.extend(word[i:])
- break
- else:
- new_word.extend(word[i:j])
- i = j
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = "@@ ".join(word)
- word = word[:-4]
- self.cache[token] = word
- return word
- def _tokenize(self, text):
- """Tokenize a string."""
- split_tokens = []
- words = re.findall(r"\S+\n?", text)
- for token in words:
- split_tokens.extend(list(self.bpe(token).split(" ")))
- return split_tokens
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.encoder.get(token, self.encoder.get(self.unk_token))
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.decoder.get(index, self.unk_token)
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- out_string = " ".join(tokens).replace("@@ ", "").strip()
- return out_string
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- merge_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
- )
- with open(vocab_file, "w", encoding="utf-8") as f:
- f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
- index = 0
- with open(merge_file, "w", encoding="utf-8") as writer:
- writer.write("#version: 0.2\n")
- for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
- if index != token_index:
- logger.warning(
- f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
- " Please check that the tokenizer is not corrupted!"
- )
- index = token_index
- writer.write(" ".join(bpe_tokens) + "\n")
- index += 1
- return vocab_file, merge_file
- # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
- # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
- # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
- # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
- # return ''.join(tokens_generated_so_far)
|