| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- # coding=utf-8
- # Copyright 2024 Descript and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Dac model configuration"""
- import math
- import numpy as np
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class DacConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of an [`DacModel`]. It is used to instantiate a
- Dac model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the
- [descript/dac_16khz](https://huggingface.co/descript/dac_16khz) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- encoder_hidden_size (`int`, *optional*, defaults to 64):
- Intermediate representation dimension for the encoder.
- downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 8, 8]`):
- Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
- decoder_hidden_size (`int`, *optional*, defaults to 1536):
- Intermediate representation dimension for the decoder.
- n_codebooks (`int`, *optional*, defaults to 9):
- Number of codebooks in the VQVAE.
- codebook_size (`int`, *optional*, defaults to 1024):
- Number of discrete codes in each codebook.
- codebook_dim (`int`, *optional*, defaults to 8):
- Dimension of the codebook vectors. If not defined, uses `encoder_hidden_size`.
- quantizer_dropout (`bool`, *optional*, defaults to 0):
- Whether to apply dropout to the quantizer.
- commitment_loss_weight (float, *optional*, defaults to 0.25):
- Weight of the commitment loss term in the VQVAE loss function.
- codebook_loss_weight (float, *optional*, defaults to 1.0):
- Weight of the codebook loss term in the VQVAE loss function.
- sampling_rate (`int`, *optional*, defaults to 16000):
- The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
- Example:
- ```python
- >>> from transformers import DacModel, DacConfig
- >>> # Initializing a "descript/dac_16khz" style configuration
- >>> configuration = DacConfig()
- >>> # Initializing a model (with random weights) from the "descript/dac_16khz" style configuration
- >>> model = DacModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "dac"
- def __init__(
- self,
- encoder_hidden_size=64,
- downsampling_ratios=[2, 4, 8, 8],
- decoder_hidden_size=1536,
- n_codebooks=9,
- codebook_size=1024,
- codebook_dim=8,
- quantizer_dropout=0,
- commitment_loss_weight=0.25,
- codebook_loss_weight=1.0,
- sampling_rate=16000,
- **kwargs,
- ):
- self.encoder_hidden_size = encoder_hidden_size
- self.downsampling_ratios = downsampling_ratios
- self.decoder_hidden_size = decoder_hidden_size
- self.upsampling_ratios = downsampling_ratios[::-1]
- self.n_codebooks = n_codebooks
- self.codebook_size = codebook_size
- self.codebook_dim = codebook_dim
- self.quantizer_dropout = quantizer_dropout
- self.sampling_rate = sampling_rate
- self.hidden_size = encoder_hidden_size * (2 ** len(downsampling_ratios))
- self.hop_length = int(np.prod(downsampling_ratios))
- self.commitment_loss_weight = commitment_loss_weight
- self.codebook_loss_weight = codebook_loss_weight
- super().__init__(**kwargs)
- @property
- def frame_rate(self) -> int:
- hop_length = np.prod(self.upsampling_ratios)
- return math.ceil(self.sampling_rate / hop_length)
|