| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374 |
- # coding=utf-8
- # Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch Data2VecVision model."""
- import collections.abc
- import math
- from dataclasses import dataclass
- from typing import List, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPooling,
- ImageClassifierOutput,
- SemanticSegmenterOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import (
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- torch_int,
- )
- from .configuration_data2vec_vision import Data2VecVisionConfig
- logger = logging.get_logger(__name__)
- # General docstring
- _CONFIG_FOR_DOC = "Data2VecVisionConfig"
- # Base docstring
- _CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base"
- _EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
- # Image classification docstring
- _IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k"
- _IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote"
- @dataclass
- # Copied from transformers.models.beit.modeling_beit.BeitModelOutputWithPooling with Beit->Data2VecVision
- class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling):
- """
- Class for outputs of [`Data2VecVisionModel`].
- Args:
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the model.
- pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
- Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
- *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
- will be returned.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the model at the output of each layer plus the initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
- heads.
- """
- # Copied from transformers.models.beit.modeling_beit.drop_path
- def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
- """
- Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
- however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
- layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
- argument.
- """
- if drop_prob == 0.0 or not training:
- return input
- keep_prob = 1 - drop_prob
- shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
- random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
- random_tensor.floor_() # binarize
- output = input.div(keep_prob) * random_tensor
- return output
- # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Data2VecVision
- class Data2VecVisionDropPath(nn.Module):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
- def __init__(self, drop_prob: Optional[float] = None) -> None:
- super().__init__()
- self.drop_prob = drop_prob
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- return drop_path(hidden_states, self.drop_prob, self.training)
- def extra_repr(self) -> str:
- return "p={}".format(self.drop_prob)
- # Copied from transformers.models.beit.modeling_beit.BeitEmbeddings with Beit->Data2VecVision
- class Data2VecVisionEmbeddings(nn.Module):
- """
- Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
- """
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__()
- self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
- if config.use_mask_token:
- self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
- else:
- self.mask_token = None
- self.patch_embeddings = Data2VecVisionPatchEmbeddings(config)
- self.patch_size = config.patch_size
- self.image_size = (
- config.image_size
- if isinstance(config.image_size, collections.abc.Iterable)
- else (config.image_size, config.image_size)
- )
- num_patches = self.patch_embeddings.num_patches
- if config.use_absolute_position_embeddings:
- self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
- else:
- self.position_embeddings = None
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
- def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
- """
- This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
- images. This method is also adapted to support torch.jit tracing.
- Adapted from:
- - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
- """
- num_patches = embeddings.shape[1] - 1
- num_positions = self.position_embeddings.shape[1] - 1
- # always interpolate when tracing to ensure the exported model works for dynamic input shapes
- if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
- return self.position_embeddings
- class_pos_embed = self.position_embeddings[:, :1]
- patch_pos_embed = self.position_embeddings[:, 1:]
- dim = embeddings.shape[-1]
- new_height = height // self.patch_size
- new_width = width // self.patch_size
- sqrt_num_positions = torch_int(num_positions**0.5)
- patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
- patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
- patch_pos_embed = nn.functional.interpolate(
- patch_pos_embed,
- size=(new_height, new_width),
- mode="bicubic",
- align_corners=False,
- )
- patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
- return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
- def forward(
- self,
- pixel_values: torch.Tensor,
- bool_masked_pos: Optional[torch.BoolTensor] = None,
- interpolate_pos_encoding: bool = False,
- ) -> torch.Tensor:
- _, _, height, width = pixel_values.shape
- embeddings, (patch_height, patch_width) = self.patch_embeddings(
- pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None
- )
- batch_size, seq_len, _ = embeddings.size()
- if bool_masked_pos is not None:
- mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
- # replace the masked visual tokens by mask_tokens
- w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
- embeddings = embeddings * (1 - w) + mask_tokens * w
- cls_tokens = self.cls_token.expand(batch_size, -1, -1)
- if self.position_embeddings is not None:
- if interpolate_pos_encoding:
- cls_tokens = cls_tokens + self.interpolate_pos_encoding(embeddings, height, width)
- else:
- cls_tokens = cls_tokens + self.position_embeddings[:, :1, :]
- embeddings = torch.cat((cls_tokens, embeddings), dim=1)
- embeddings = self.dropout(embeddings)
- return embeddings, (patch_height, patch_width)
- # Copied from transformers.models.beit.modeling_beit.BeitPatchEmbeddings with Beit->Data2VecVision
- class Data2VecVisionPatchEmbeddings(nn.Module):
- """
- This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
- `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
- Transformer.
- """
- def __init__(self, config):
- super().__init__()
- image_size, patch_size = config.image_size, config.patch_size
- num_channels, hidden_size = config.num_channels, config.hidden_size
- image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
- patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
- num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
- patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
- self.image_size = image_size
- self.patch_size = patch_size
- self.num_channels = num_channels
- self.num_patches = num_patches
- self.patch_shape = patch_shape
- self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
- def forward(
- self,
- pixel_values: torch.Tensor,
- position_embedding: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- batch_size, num_channels, height, width = pixel_values.shape
- if num_channels != self.num_channels:
- raise ValueError(
- "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
- )
- embeddings = self.projection(pixel_values)
- patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
- if position_embedding is not None:
- # interpolate the position embedding to the corresponding size
- position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(
- 0, 3, 1, 2
- )
- position_embedding = nn.functional.interpolate(
- position_embedding, size=(patch_height, patch_width), mode="bicubic"
- )
- embeddings = embeddings + position_embedding
- embeddings = embeddings.flatten(2).transpose(1, 2)
- return embeddings, (patch_height, patch_width)
- # Copied from transformers.models.beit.modeling_beit.BeitSelfAttention with Beit->Data2VecVision
- class Data2VecVisionSelfAttention(nn.Module):
- def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
- super().__init__()
- self.config = config
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
- f"heads {config.num_attention_heads}."
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- if window_size:
- self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size)
- else:
- self.relative_position_bias = None
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
- interpolate_pos_encoding: bool = False,
- resolution: Optional[Tuple[int]] = None,
- ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
- mixed_query_layer = self.query(hidden_states)
- key_layer = self.transpose_for_scores(self.key(hidden_states))
- value_layer = self.transpose_for_scores(self.value(hidden_states))
- query_layer = self.transpose_for_scores(mixed_query_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- # Add relative position bias if present.
- if self.relative_position_bias is not None:
- height, width = resolution
- window_size = (height // self.config.patch_size, width // self.config.patch_size)
- attention_scores = attention_scores + self.relative_position_bias(
- window_size, interpolate_pos_encoding, dim_size=hidden_states.shape[1]
- )
- # Add shared relative position bias if provided.
- if relative_position_bias is not None:
- attention_scores = attention_scores + relative_position_bias
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(*new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- return outputs
- # Copied from transformers.models.beit.modeling_beit.BeitSelfOutput with Beit->Data2VecVision
- class Data2VecVisionSelfOutput(nn.Module):
- """
- The residual connection is defined in Data2VecVisionLayer instead of here (as is the case with other models), due to the
- layernorm applied before each block.
- """
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
- # Copied from transformers.models.beit.modeling_beit.BeitAttention with Beit->Data2VecVision
- class Data2VecVisionAttention(nn.Module):
- def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
- super().__init__()
- self.attention = Data2VecVisionSelfAttention(config, window_size=window_size)
- self.output = Data2VecVisionSelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.attention.query = prune_linear_layer(self.attention.query, index)
- self.attention.key = prune_linear_layer(self.attention.key, index)
- self.attention.value = prune_linear_layer(self.attention.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
- self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
- interpolate_pos_encoding: bool = False,
- resolution: Optional[Tuple[int]] = None,
- ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
- self_outputs = self.attention(
- hidden_states, head_mask, output_attentions, relative_position_bias, interpolate_pos_encoding, resolution
- )
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.beit.modeling_beit.BeitIntermediate with Beit->Data2VecVision
- class Data2VecVisionIntermediate(nn.Module):
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.beit.modeling_beit.BeitOutput with Beit->Data2VecVision
- class Data2VecVisionOutput(nn.Module):
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
- # Copied from transformers.models.beit.modeling_beit.BeitLayer with Beit->Data2VecVision,BEiT->Data2VecVision
- class Data2VecVisionLayer(nn.Module):
- """This corresponds to the Block class in the timm implementation."""
- def __init__(
- self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0
- ) -> None:
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = Data2VecVisionAttention(config, window_size=window_size)
- self.intermediate = Data2VecVisionIntermediate(config)
- self.output = Data2VecVisionOutput(config)
- self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.drop_path = Data2VecVisionDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
- self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- init_values = config.layer_scale_init_value
- if init_values > 0:
- self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
- self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
- else:
- self.lambda_1, self.lambda_2 = None, None
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
- interpolate_pos_encoding: bool = False,
- resolution: Optional[Tuple[int]] = None,
- ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
- self_attention_outputs = self.attention(
- self.layernorm_before(hidden_states), # in Data2VecVision, layernorm is applied before self-attention
- head_mask,
- output_attentions=output_attentions,
- relative_position_bias=relative_position_bias,
- interpolate_pos_encoding=interpolate_pos_encoding,
- resolution=resolution,
- )
- attention_output = self_attention_outputs[0]
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- # apply lambda_1 if present
- if self.lambda_1 is not None:
- attention_output = self.lambda_1 * attention_output
- # first residual connection
- hidden_states = self.drop_path(attention_output) + hidden_states
- # in Data2VecVision, layernorm is also applied after self-attention
- layer_output = self.layernorm_after(hidden_states)
- layer_output = self.intermediate(layer_output)
- layer_output = self.output(layer_output)
- if self.lambda_2 is not None:
- layer_output = self.lambda_2 * layer_output
- # second residual connection
- layer_output = self.drop_path(layer_output) + hidden_states
- outputs = (layer_output,) + outputs
- return outputs
- # Copied from transformers.models.beit.modeling_beit.BeitRelativePositionBias with Beit->Data2VecVision
- class Data2VecVisionRelativePositionBias(nn.Module):
- def __init__(self, config: Data2VecVisionConfig, window_size: tuple) -> None:
- super().__init__()
- self.window_size = window_size
- self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros(self.num_relative_distance, config.num_attention_heads)
- ) # 2*Wh-1 * 2*Ww-1, nH
- # cls to token & token 2 cls & cls to cls
- self.relative_position_indices = {}
- def generate_relative_position_index(self, window_size: Tuple[int, int]) -> torch.Tensor:
- """
- This method creates the relative position index, modified to support arbitrary window sizes,
- as introduced in [MiDaS v3.1](https://arxiv.org/abs/2307.14460).
- """
- num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
- # cls to token & token 2 cls & cls to cls
- # get pair-wise relative position index for each token inside the window
- window_area = window_size[0] * window_size[1]
- grid = torch.meshgrid(torch.arange(window_size[0]), torch.arange(window_size[1]), indexing="ij")
- coords = torch.stack(grid) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
- relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = num_relative_distance - 3
- relative_position_index[0:, 0] = num_relative_distance - 2
- relative_position_index[0, 0] = num_relative_distance - 1
- return relative_position_index
- def forward(self, window_size, interpolate_pos_encoding: bool = False, dim_size=None) -> torch.Tensor:
- """
- Modification of timm.models.beit.py: Attention._get_rel_pos_bias to support arbitrary window sizes.
- """
- old_height = 2 * self.window_size[0] - 1
- old_width = 2 * self.window_size[1] - 1
- new_height = 2 * window_size[0] - 1
- new_width = 2 * window_size[1] - 1
- old_relative_position_bias_table = self.relative_position_bias_table
- old_num_relative_distance = self.num_relative_distance
- new_num_relative_distance = new_height * new_width + 3
- old_sub_table = old_relative_position_bias_table[: old_num_relative_distance - 3]
- old_sub_table = old_sub_table.reshape(1, old_width, old_height, -1).permute(0, 3, 1, 2)
- new_sub_table = nn.functional.interpolate(
- old_sub_table, size=(torch_int(new_height), torch_int(new_width)), mode="bilinear"
- )
- new_sub_table = new_sub_table.permute(0, 2, 3, 1).reshape(new_num_relative_distance - 3, -1)
- new_relative_position_bias_table = torch.cat(
- [new_sub_table, old_relative_position_bias_table[old_num_relative_distance - 3 :]]
- )
- key = window_size
- if key not in self.relative_position_indices.keys():
- self.relative_position_indices[key] = self.generate_relative_position_index(window_size)
- relative_position_bias = new_relative_position_bias_table[self.relative_position_indices[key].view(-1)]
- # patch_size*num_patches_height, patch_size*num_patches_width, num_attention_heads
- relative_position_bias = relative_position_bias.view(
- window_size[0] * window_size[1] + 1, window_size[0] * window_size[1] + 1, -1
- )
- # num_attention_heads, patch_size*num_patches_width, patch_size*num_patches_height
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
- if interpolate_pos_encoding:
- relative_position_bias = nn.functional.interpolate(
- relative_position_bias.unsqueeze(1),
- size=(dim_size, dim_size),
- mode="bilinear",
- align_corners=False,
- ).squeeze(1)
- return relative_position_bias.unsqueeze(0)
- # Copied from transformers.models.beit.modeling_beit.BeitEncoder with Beit->Data2VecVision
- class Data2VecVisionEncoder(nn.Module):
- def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
- super().__init__()
- self.config = config
- if config.use_shared_relative_position_bias:
- self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size)
- else:
- self.relative_position_bias = None
- # stochastic depth decay rule
- dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
- self.layer = nn.ModuleList(
- [
- Data2VecVisionLayer(
- config,
- window_size=window_size if config.use_relative_position_bias else None,
- drop_path_rate=dpr[i],
- )
- for i in range(config.num_hidden_layers)
- ]
- )
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- output_hidden_states: bool = False,
- interpolate_pos_encoding: bool = False,
- resolution: Optional[Tuple[int]] = None,
- return_dict: bool = True,
- ) -> Union[tuple, BaseModelOutput]:
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- layer_head_mask,
- output_attentions,
- )
- else:
- height, width = resolution
- window_size = (height // self.config.patch_size, width // self.config.patch_size)
- relative_position_bias = (
- self.relative_position_bias(
- window_size, interpolate_pos_encoding=interpolate_pos_encoding, dim_size=hidden_states.shape[1]
- )
- if self.relative_position_bias is not None
- else None
- )
- layer_outputs = layer_module(
- hidden_states,
- layer_head_mask,
- output_attentions,
- relative_position_bias,
- interpolate_pos_encoding,
- resolution,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- )
- # Copied from transformers.models.beit.modeling_beit.BeitPreTrainedModel with Beit->Data2VecVision,beit->data2vec_vision
- class Data2VecVisionPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = Data2VecVisionConfig
- base_model_prefix = "data2vec_vision"
- main_input_name = "pixel_values"
- supports_gradient_checkpointing = True
- _no_split_modules = ["Data2VecVisionLayer"]
- _keys_to_ignore_on_load_unexpected = [r".*relative_position_index.*"]
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- DATA2VEC_VISION_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- DATA2VEC_VISION_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
- [`BeitImageProcessor.__call__`] for details.
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
- Whether to interpolate the pre-trained position encodings.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.",
- DATA2VEC_VISION_START_DOCSTRING,
- )
- # Copied from transformers.models.beit.modeling_beit.BeitModel with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,True->False
- class Data2VecVisionModel(Data2VecVisionPreTrainedModel):
- def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False) -> None:
- super().__init__(config)
- self.config = config
- self.embeddings = Data2VecVisionEmbeddings(config)
- self.encoder = Data2VecVisionEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
- self.layernorm = (
- nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- )
- self.pooler = Data2VecVisionPooler(config) if add_pooling_layer else None
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.patch_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=Data2VecVisionModelOutputWithPooling,
- config_class=_CONFIG_FOR_DOC,
- modality="vision",
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def forward(
- self,
- pixel_values: torch.Tensor,
- bool_masked_pos: Optional[torch.BoolTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- return_dict: Optional[bool] = None,
- ) -> Union[tuple, Data2VecVisionModelOutputWithPooling]:
- r"""
- bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
- Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output, _ = self.embeddings(
- pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
- )
- resolution = pixel_values.shape[2:]
- encoder_outputs = self.encoder(
- embedding_output,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- resolution=resolution,
- return_dict=return_dict,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- sequence_output = encoder_outputs[0]
- sequence_output = self.layernorm(sequence_output)
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- if not return_dict:
- head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
- return head_outputs + encoder_outputs[1:]
- return Data2VecVisionModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- # Copied from transformers.models.beit.modeling_beit.BeitPooler with Beit->Data2VecVision
- class Data2VecVisionPooler(nn.Module):
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__()
- self.layernorm = (
- nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
- )
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- if self.layernorm is not None:
- # Mean pool the final hidden states of the patch tokens
- patch_tokens = hidden_states[:, 1:, :]
- pooled_output = self.layernorm(patch_tokens.mean(1))
- else:
- # Pool by simply taking the final hidden state of the [CLS] token
- pooled_output = hidden_states[:, 0]
- return pooled_output
- @add_start_docstrings(
- """
- Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of
- the final hidden states of the patch tokens) e.g. for ImageNet.
- """,
- DATA2VEC_VISION_START_DOCSTRING,
- )
- # Copied from transformers.models.beit.modeling_beit.BeitForImageClassification with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,beit->data2vec_vision
- class Data2VecVisionForImageClassification(Data2VecVisionPreTrainedModel):
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__(config)
- self.num_labels = config.num_labels
- self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=True)
- # Classifier head
- self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
- output_type=ImageClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
- )
- def forward(
- self,
- pixel_values: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- return_dict: Optional[bool] = None,
- ) -> Union[tuple, ImageClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.data2vec_vision(
- pixel_values,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- )
- pooled_output = outputs.pooler_output if return_dict else outputs[1]
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return ImageClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- # Copied from transformers.models.beit.modeling_beit.BeitConvModule with Beit->Data2VecVision
- class Data2VecVisionConvModule(nn.Module):
- """
- A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
- layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
- Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
- padding: Union[int, Tuple[int, int], str] = 0,
- bias: bool = False,
- dilation: Union[int, Tuple[int, int]] = 1,
- ) -> None:
- super().__init__()
- self.conv = nn.Conv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- padding=padding,
- bias=bias,
- dilation=dilation,
- )
- self.bn = nn.BatchNorm2d(out_channels)
- self.activation = nn.ReLU()
- def forward(self, input: torch.Tensor) -> torch.Tensor:
- output = self.conv(input)
- output = self.bn(output)
- output = self.activation(output)
- return output
- # Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingBlock with Beit->Data2VecVision
- class Data2VecVisionPyramidPoolingBlock(nn.Module):
- def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
- super().__init__()
- self.layers = [
- nn.AdaptiveAvgPool2d(pool_scale),
- Data2VecVisionConvModule(in_channels, channels, kernel_size=1),
- ]
- for i, layer in enumerate(self.layers):
- self.add_module(str(i), layer)
- def forward(self, input: torch.Tensor) -> torch.Tensor:
- hidden_state = input
- for layer in self.layers:
- hidden_state = layer(hidden_state)
- return hidden_state
- # Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingModule with Beit->Data2VecVision
- class Data2VecVisionPyramidPoolingModule(nn.Module):
- """
- Pyramid Pooling Module (PPM) used in PSPNet.
- Args:
- pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
- Module.
- in_channels (int): Input channels.
- channels (int): Channels after modules, before conv_seg.
- align_corners (bool): align_corners argument of F.interpolate.
- Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
- """
- def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
- super().__init__()
- self.pool_scales = pool_scales
- self.align_corners = align_corners
- self.in_channels = in_channels
- self.channels = channels
- self.blocks = []
- for i, pool_scale in enumerate(pool_scales):
- block = Data2VecVisionPyramidPoolingBlock(
- pool_scale=pool_scale, in_channels=in_channels, channels=channels
- )
- self.blocks.append(block)
- self.add_module(str(i), block)
- def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
- ppm_outs = []
- for ppm in self.blocks:
- ppm_out = ppm(x)
- upsampled_ppm_out = nn.functional.interpolate(
- ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
- )
- ppm_outs.append(upsampled_ppm_out)
- return ppm_outs
- # Copied from transformers.models.beit.modeling_beit.BeitUperHead with Beit->Data2VecVision
- class Data2VecVisionUperHead(nn.Module):
- """
- Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
- [UPerNet](https://arxiv.org/abs/1807.10221).
- Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
- """
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__()
- self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
- self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
- self.channels = config.hidden_size
- self.align_corners = False
- self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
- # PSP Module
- self.psp_modules = Data2VecVisionPyramidPoolingModule(
- self.pool_scales,
- self.in_channels[-1],
- self.channels,
- align_corners=self.align_corners,
- )
- self.bottleneck = Data2VecVisionConvModule(
- self.in_channels[-1] + len(self.pool_scales) * self.channels,
- self.channels,
- kernel_size=3,
- padding=1,
- )
- # FPN Module
- self.lateral_convs = nn.ModuleList()
- self.fpn_convs = nn.ModuleList()
- for in_channels in self.in_channels[:-1]: # skip the top layer
- l_conv = Data2VecVisionConvModule(in_channels, self.channels, kernel_size=1)
- fpn_conv = Data2VecVisionConvModule(self.channels, self.channels, kernel_size=3, padding=1)
- self.lateral_convs.append(l_conv)
- self.fpn_convs.append(fpn_conv)
- self.fpn_bottleneck = Data2VecVisionConvModule(
- len(self.in_channels) * self.channels,
- self.channels,
- kernel_size=3,
- padding=1,
- )
- def psp_forward(self, inputs):
- x = inputs[-1]
- psp_outs = [x]
- psp_outs.extend(self.psp_modules(x))
- psp_outs = torch.cat(psp_outs, dim=1)
- output = self.bottleneck(psp_outs)
- return output
- def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
- # build laterals
- laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
- laterals.append(self.psp_forward(encoder_hidden_states))
- # build top-down path
- used_backbone_levels = len(laterals)
- for i in range(used_backbone_levels - 1, 0, -1):
- prev_shape = laterals[i - 1].shape[2:]
- laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
- laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
- )
- # build outputs
- fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
- # append psp feature
- fpn_outs.append(laterals[-1])
- for i in range(used_backbone_levels - 1, 0, -1):
- fpn_outs[i] = nn.functional.interpolate(
- fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
- )
- fpn_outs = torch.cat(fpn_outs, dim=1)
- output = self.fpn_bottleneck(fpn_outs)
- output = self.classifier(output)
- return output
- # Copied from transformers.models.beit.modeling_beit.BeitFCNHead with Beit->Data2VecVision
- class Data2VecVisionFCNHead(nn.Module):
- """
- Fully Convolution Networks for Semantic Segmentation. This head is implemented of
- [FCNNet](https://arxiv.org/abs/1411.4038>).
- Args:
- config (Data2VecVisionConfig): Configuration.
- in_channels
- kernel_size (int): The kernel size for convs in the head. Default: 3.
- dilation (int): The dilation rate for convs in the head. Default: 1.
- Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
- """
- def __init__(
- self,
- config: Data2VecVisionConfig,
- in_index: int = 2,
- kernel_size: int = 3,
- dilation: Union[int, Tuple[int, int]] = 1,
- ) -> None:
- super().__init__()
- self.in_channels = config.hidden_size
- self.channels = config.auxiliary_channels
- self.num_convs = config.auxiliary_num_convs
- self.concat_input = config.auxiliary_concat_input
- self.in_index = in_index
- conv_padding = (kernel_size // 2) * dilation
- convs = []
- convs.append(
- Data2VecVisionConvModule(
- self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
- )
- )
- for i in range(self.num_convs - 1):
- convs.append(
- Data2VecVisionConvModule(
- self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
- )
- )
- if self.num_convs == 0:
- self.convs = nn.Identity()
- else:
- self.convs = nn.Sequential(*convs)
- if self.concat_input:
- self.conv_cat = Data2VecVisionConvModule(
- self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
- )
- self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
- def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
- # just take the relevant feature maps
- hidden_states = encoder_hidden_states[self.in_index]
- output = self.convs(hidden_states)
- if self.concat_input:
- output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
- output = self.classifier(output)
- return output
- @add_start_docstrings(
- """
- Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
- """,
- DATA2VEC_VISION_START_DOCSTRING,
- )
- # Copied from transformers.models.beit.modeling_beit.BeitForSemanticSegmentation with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,microsoft/beit-base-finetuned-ade-640-640->facebook/data2vec-vision-base,beit->data2vec_vision
- class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel):
- def __init__(self, config: Data2VecVisionConfig) -> None:
- super().__init__(config)
- self.num_labels = config.num_labels
- self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=False)
- # FPNs
- if len(self.config.out_indices) != 4:
- raise ValueError(
- "Data2VecVisionForSemanticSegmentation requires config.out_indices to be a list of 4 integers, "
- "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
- "a base-sized architecture."
- )
- self.fpn1 = nn.Sequential(
- nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
- nn.BatchNorm2d(config.hidden_size),
- nn.GELU(),
- nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
- )
- self.fpn2 = nn.Sequential(
- nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
- )
- self.fpn3 = nn.Identity()
- self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
- # Semantic segmentation head(s)
- self.decode_head = Data2VecVisionUperHead(config)
- self.auxiliary_head = Data2VecVisionFCNHead(config) if config.use_auxiliary_head else None
- # Initialize weights and apply final processing
- self.post_init()
- def compute_loss(self, logits, auxiliary_logits, labels):
- # upsample logits to the images' original size
- upsampled_logits = nn.functional.interpolate(
- logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
- )
- if auxiliary_logits is not None:
- upsampled_auxiliary_logits = nn.functional.interpolate(
- auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
- )
- # compute weighted loss
- loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
- main_loss = loss_fct(upsampled_logits, labels)
- loss = main_loss
- if auxiliary_logits is not None:
- auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
- loss += self.config.auxiliary_loss_weight * auxiliary_loss
- return loss
- @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- pixel_values: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: bool = False,
- return_dict: Optional[bool] = None,
- ) -> Union[tuple, SemanticSegmenterOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
- Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor, Data2VecVisionForSemanticSegmentation
- >>> from PIL import Image
- >>> import requests
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base")
- >>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base")
- >>> inputs = image_processor(images=image, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> # logits are of shape (batch_size, num_labels, height, width)
- >>> logits = outputs.logits
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- if labels is not None and self.config.num_labels == 1:
- raise ValueError("The number of labels should be greater than one")
- outputs = self.data2vec_vision(
- pixel_values,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=True, # we need the intermediate hidden states
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- )
- encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
- # only keep certain features, and reshape
- # note that we do +1 as the encoder_hidden_states also includes the initial embeddings
- features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
- batch_size = pixel_values.shape[0]
- patch_resolution = self.config.image_size // self.config.patch_size
- features = [
- x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
- ]
- # apply FPNs
- ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
- for i in range(len(features)):
- features[i] = ops[i](features[i])
- logits = self.decode_head(features)
- auxiliary_logits = None
- if self.auxiliary_head is not None:
- auxiliary_logits = self.auxiliary_head(features)
- loss = None
- if labels is not None:
- loss = self.compute_loss(logits, auxiliary_logits, labels)
- if not return_dict:
- if output_hidden_states:
- output = (logits,) + outputs[1:]
- else:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SemanticSegmenterOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states if output_hidden_states else None,
- attentions=outputs.attentions,
- )
|