| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378 |
- # coding=utf-8
- # Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch DBRX model."""
- import math
- from typing import Any, Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from ...activations import ACT2FN
- from ...cache_utils import Cache, DynamicCache, StaticCache
- from ...generation import GenerationMixin
- from ...modeling_attn_mask_utils import AttentionMaskConverter
- from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- is_flash_attn_2_available,
- is_flash_attn_greater_or_equal_2_10,
- logging,
- replace_return_docstrings,
- )
- from .configuration_dbrx import DbrxConfig
- if is_flash_attn_2_available():
- from ...modeling_flash_attention_utils import _flash_attention_forward
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "DbrxConfig"
- # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with Gemma->Dbrx
- class DbrxRotaryEmbedding(nn.Module):
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
- super().__init__()
- self.dim = dim
- self.max_position_embeddings = max_position_embeddings
- self.base = base
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
- self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
- @torch.no_grad()
- def forward(self, x, position_ids, seq_len=None):
- # x: [bs, num_attention_heads, seq_len, head_size]
- self.inv_freq.to(x.device)
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
- position_ids_expanded = position_ids[:, None, :].float()
- # Force float32 since bfloat16 loses precision on long contexts
- # See https://github.com/huggingface/transformers/pull/29285
- device_type = x.device.type
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
- with torch.autocast(device_type=device_type, enabled=False):
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
- emb = torch.cat((freqs, freqs), dim=-1)
- cos = emb.cos()
- sin = emb.sin()
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
- # Copied from transformers.models.llama.modeling_llama.rotate_half
- def rotate_half(x):
- """Rotates half the hidden dims of the input."""
- x1 = x[..., : x.shape[-1] // 2]
- x2 = x[..., x.shape[-1] // 2 :]
- return torch.cat((-x2, x1), dim=-1)
- # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
- """Applies Rotary Position Embedding to the query and key tensors.
- Args:
- q (`torch.Tensor`): The query tensor.
- k (`torch.Tensor`): The key tensor.
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
- sin (`torch.Tensor`): The sine part of the rotary embedding.
- position_ids (`torch.Tensor`, *optional*):
- Deprecated and unused.
- unsqueeze_dim (`int`, *optional*, defaults to 1):
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
- Returns:
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
- """
- cos = cos.unsqueeze(unsqueeze_dim)
- sin = sin.unsqueeze(unsqueeze_dim)
- q_embed = (q * cos) + (rotate_half(q) * sin)
- k_embed = (k * cos) + (rotate_half(k) * sin)
- return q_embed, k_embed
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
- """
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
- """
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
- if n_rep == 1:
- return hidden_states
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
- def load_balancing_loss_func(
- gate_logits: torch.Tensor,
- num_experts: int,
- top_k: int,
- attention_mask: Optional[torch.Tensor],
- ) -> torch.Tensor:
- r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
- See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
- function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
- experts is too unbalanced.
- Args:
- gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
- Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
- shape [batch_size X sequence_length, num_experts].
- num_experts (`int`):
- Number of experts.
- top_k (`int`):
- The number of experts each token is routed to.
- attention_mask (`torch.Tensor`, *optional*):
- The attention_mask used in forward function
- shape [batch_size X sequence_length] if not None.
- Returns:
- The auxiliary loss.
- """
- if gate_logits is None or not isinstance(gate_logits, tuple):
- return torch.tensor(0.0)
- if isinstance(gate_logits, tuple):
- compute_device = gate_logits[0].device
- concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
- routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
- _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
- if attention_mask is None:
- # Compute the percentage of tokens routed to each experts
- tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
- # Compute the average probability of routing to these experts
- router_prob_per_expert = torch.mean(routing_weights, dim=0)
- else:
- batch_size, sequence_length = attention_mask.shape
- num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
- # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
- expert_attention_mask = (
- attention_mask[None, :, :, None, None]
- .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
- .reshape(-1, top_k, num_experts)
- .to(compute_device)
- )
- # Compute the percentage of tokens routed to each experts
- tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
- expert_attention_mask, dim=0
- )
- # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
- router_per_expert_attention_mask = (
- attention_mask[None, :, :, None]
- .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
- .reshape(-1, num_experts)
- .to(compute_device)
- )
- # Compute the average probability of routing to these experts
- router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
- router_per_expert_attention_mask, dim=0
- )
- overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
- return overall_loss * num_experts
- class DbrxAttention(nn.Module):
- """Multi-head self attention."""
- def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
- super().__init__()
- self.config = config
- self.hidden_size = config.d_model
- self.num_heads = config.n_heads
- self.head_dim = self.hidden_size // self.num_heads
- self.max_position_embeddings = config.max_seq_len
- self.block_idx = block_idx
- if block_idx is None:
- logger.warning_once(
- f"Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will "
- + "lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` "
- + "when creating this class."
- )
- attn_config = config.attn_config
- self.attn_pdrop = attn_config.attn_pdrop
- self.clip_qkv = attn_config.clip_qkv
- self.num_key_value_heads = attn_config.kv_n_heads
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
- self.rope_theta = attn_config.rope_theta
- self.is_causal = True
- self.Wqkv = nn.Linear(
- self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=False
- )
- self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
- self.rotary_emb = DbrxRotaryEmbedding(
- self.head_dim,
- max_position_embeddings=self.max_position_embeddings,
- base=self.rope_theta,
- )
- def forward(
- self,
- hidden_states: torch.Tensor,
- position_ids: torch.LongTensor,
- attention_mask: Optional[torch.Tensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- **kwargs: Any,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
- bsz, q_len, _ = hidden_states.size()
- qkv_states = self.Wqkv(hidden_states)
- min_val = -self.clip_qkv if self.clip_qkv is not None else None
- max_val = self.clip_qkv
- qkv_states = qkv_states.clamp(min=min_val, max=max_val)
- query_states, key_states, value_states = qkv_states.split(
- [
- self.hidden_size,
- self.num_key_value_heads * self.head_dim,
- self.num_key_value_heads * self.head_dim,
- ],
- dim=2,
- )
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- cos, sin = self.rotary_emb(value_states, position_ids)
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
- if past_key_value is not None:
- # sin and cos are specific to RoPE models; position_ids needed for the static cache
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
- key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
- key_states = repeat_kv(key_states, self.num_key_value_groups)
- value_states = repeat_kv(value_states, self.num_key_value_groups)
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
- if attention_mask is not None: # no matter the length, we just slice it
- causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
- attn_weights = attn_weights + causal_mask
- # upcast attention to fp32
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
- attn_weights = nn.functional.dropout(attn_weights, p=self.attn_pdrop, training=self.training)
- attn_output = torch.matmul(attn_weights, value_states)
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
- + f" {attn_output.size()}"
- )
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
- attn_output = self.out_proj(attn_output)
- if not output_attentions:
- attn_weights = None
- return attn_output, attn_weights, past_key_value
- class DbrxFlashAttention2(DbrxAttention):
- """Dbrx flash attention module.
- This module inherits from `DbrxAttention` as the weights of the module stays
- untouched. The only required change would be on the forward pass where it
- calls the public API of flash attention.
- """
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- **kwargs: Any,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- if isinstance(past_key_value, StaticCache):
- raise ValueError(
- "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
- "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
- )
- logger.info("Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.")
- output_attentions = False
- bsz, q_len, _ = hidden_states.size()
- qkv_states = self.Wqkv(hidden_states)
- if self.clip_qkv is not None:
- qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
- query_states, key_states, value_states = qkv_states.split(
- [
- self.hidden_size,
- self.num_key_value_heads * self.head_dim,
- self.num_key_value_heads * self.head_dim,
- ],
- dim=2,
- )
- # Flash attention requires the input to have the shape
- # batch_size x seq_length x head_dim x hidden_dim
- # therefore we just need to keep the original shape
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- cos, sin = self.rotary_emb(value_states, position_ids)
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
- if past_key_value is not None:
- # sin and cos are specific to RoPE models; cache_position needed for the static cache
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
- key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout
- # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
- # to be able to avoid many of these transpose/reshape/view.
- query_states = query_states.transpose(1, 2)
- key_states = key_states.transpose(1, 2)
- value_states = value_states.transpose(1, 2)
- dropout_rate = self.attn_pdrop if self.training else 0.0
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
- # therefore the input hidden states gets silently casted in float32. Hence, we need
- # cast them back in the correct dtype just to be sure everything works as expected.
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
- # in fp32. (LlamaRMSNorm handles it correctly)
- input_dtype = query_states.dtype
- if input_dtype == torch.float32:
- if torch.is_autocast_enabled():
- target_dtype = torch.get_autocast_gpu_dtype()
- # Handle the case where the model is quantized
- elif hasattr(self.config, "_pre_quantization_dtype"):
- target_dtype = self.config._pre_quantization_dtype
- else:
- target_dtype = query_states.dtype
- logger.warning_once(
- "The input hidden states seems to be silently casted in float32, this might be "
- + "related to the fact you have upcasted embedding or layer norm layers in "
- + f"float32. We will cast back the input in {target_dtype}."
- )
- query_states = query_states.to(target_dtype)
- key_states = key_states.to(target_dtype)
- value_states = value_states.to(target_dtype)
- attn_output = _flash_attention_forward(
- query_states,
- key_states,
- value_states,
- attention_mask,
- q_len,
- position_ids=position_ids,
- dropout=dropout_rate,
- is_causal=self.is_causal,
- use_top_left_mask=self._flash_attn_uses_top_left_mask,
- )
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
- attn_output = self.out_proj(attn_output)
- if not output_attentions:
- attn_weights = None
- return attn_output, attn_weights, past_key_value
- class DbrxSdpaAttention(DbrxAttention):
- """
- Dbrx attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
- `DbrxAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
- SDPA API.
- """
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- if output_attentions:
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
- logger.warning_once(
- "DbrxModel is using DbrxSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
- )
- return super().forward(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- cache_position=cache_position,
- )
- bsz, q_len, _ = hidden_states.size()
- qkv_states = self.Wqkv(hidden_states)
- if self.clip_qkv is not None:
- qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
- query_states, key_states, value_states = qkv_states.split(
- [
- self.hidden_size,
- self.num_key_value_heads * self.head_dim,
- self.num_key_value_heads * self.head_dim,
- ],
- dim=2,
- )
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
- cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
- if past_key_value is not None:
- # sin and cos are specific to RoPE models; cache_position needed for the static cache
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
- key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
- key_states = repeat_kv(key_states, self.num_key_value_groups)
- value_states = repeat_kv(value_states, self.num_key_value_groups)
- causal_mask = attention_mask
- if attention_mask is not None:
- causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
- if query_states.device.type == "cuda" and causal_mask is not None:
- query_states = query_states.contiguous()
- key_states = key_states.contiguous()
- value_states = value_states.contiguous()
- # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
- # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
- is_causal = True if causal_mask is None and q_len > 1 else False
- attn_output = torch.nn.functional.scaled_dot_product_attention(
- query_states,
- key_states,
- value_states,
- attn_mask=causal_mask,
- dropout_p=self.attn_pdrop if self.training else 0.0,
- is_causal=is_causal,
- )
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.view(bsz, q_len, -1)
- attn_output = self.out_proj(attn_output)
- return attn_output, None, past_key_value
- DBRX_ATTENTION_CLASSES = {
- "eager": DbrxAttention,
- "flash_attention_2": DbrxFlashAttention2,
- "sdpa": DbrxSdpaAttention,
- }
- class DbrxNormAttentionNorm(nn.Module):
- def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
- super().__init__()
- self.block_idx = block_idx
- self.resid_pdrop = config.resid_pdrop
- self.norm_1 = nn.LayerNorm(config.d_model, bias=False)
- self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation](
- config=config,
- block_idx=block_idx,
- )
- self.norm_2 = nn.LayerNorm(config.d_model, bias=False)
- def forward(
- self,
- hidden_states: torch.Tensor,
- position_ids: torch.LongTensor,
- attention_mask: Optional[torch.Tensor] = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- cache_position: Optional[torch.LongTensor] = None,
- **kwargs: Any,
- ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
- residual_states = hidden_states
- hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
- hidden_states, attn_weights, past_key_value = self.attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- cache_position=cache_position,
- **kwargs,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
- hidden_states = hidden_states + residual_states
- residual_states = hidden_states
- hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
- return residual_states, hidden_states, attn_weights, past_key_value
- class DbrxRouter(nn.Module):
- def __init__(
- self,
- hidden_size: int,
- moe_num_experts: int,
- moe_top_k: int,
- moe_jitter_eps: Optional[float],
- moe_normalize_expert_weights: Optional[float],
- ):
- super().__init__()
- self.hidden_size = hidden_size
- self.moe_num_experts = moe_num_experts
- self.moe_top_k = moe_top_k
- self.moe_jitter_eps = moe_jitter_eps
- self.moe_normalize_expert_weights = moe_normalize_expert_weights
- self.layer = nn.Linear(self.hidden_size, self.moe_num_experts, bias=False)
- def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
- if self.training and self.moe_jitter_eps is not None:
- hidden_states *= torch.empty_like(hidden_states).uniform_(
- 1.0 - self.moe_jitter_eps, 1.0 + self.moe_jitter_eps
- )
- hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
- weights = self.layer(hidden_states).softmax(dim=-1, dtype=torch.float32)
- top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
- top_weights_scale = (
- torch.norm(top_weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True)
- if self.moe_normalize_expert_weights is not None
- else 1.0
- )
- top_weights = top_weights / top_weights_scale
- weights = weights.to(hidden_states.dtype)
- top_weights = top_weights.to(hidden_states.dtype)
- return weights, top_weights, top_experts
- class DbrxExpertGLU(nn.Module):
- def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
- super().__init__()
- self.hidden_size = hidden_size
- self.ffn_hidden_size = ffn_hidden_size
- self.moe_num_experts = moe_num_experts
- self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
- self.v1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
- self.w2 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
- act_fn_name = ffn_act_fn.get("name", "silu")
- self.activation_fn = ACT2FN[act_fn_name]
- def forward(
- self, x: torch.Tensor, expert_w1: torch.Tensor, expert_v1: torch.Tensor, expert_w2: torch.Tensor
- ) -> torch.Tensor:
- gate_proj = x.matmul(expert_w1.t())
- up_proj = x.matmul(expert_v1.t())
- gate_proj = self.activation_fn(gate_proj)
- intermediate_states = gate_proj * up_proj
- down_proj = intermediate_states.matmul(expert_w2)
- return down_proj
- class DbrxExperts(nn.Module):
- def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
- super().__init__()
- self.moe_num_experts = moe_num_experts
- self.mlp = DbrxExpertGLU(
- hidden_size=hidden_size,
- ffn_hidden_size=ffn_hidden_size,
- moe_num_experts=moe_num_experts,
- ffn_act_fn=ffn_act_fn,
- )
- def forward(
- self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor
- ) -> torch.Tensor:
- bsz, q_len, hidden_size = x.shape
- x = x.view(-1, hidden_size)
- out = torch.zeros_like(x)
- expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
- # Chunk experts at once to avoid storing full parameter multiple times in autograd
- w1_chunked = self.mlp.w1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
- self.moe_num_experts, dim=0
- )
- v1_chunked = self.mlp.v1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
- self.moe_num_experts, dim=0
- )
- w2_chunked = self.mlp.w2.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
- self.moe_num_experts, dim=0
- )
- w1_chunked = [w1.squeeze(dim=0) for w1 in w1_chunked]
- v1_chunked = [v1.squeeze(dim=0) for v1 in v1_chunked]
- w2_chunked = [w2.squeeze(dim=0) for w2 in w2_chunked]
- for expert_idx in range(0, self.moe_num_experts):
- topk_idx, token_idx = torch.where(expert_mask[expert_idx])
- if token_idx.shape[0] == 0:
- continue
- token_list = token_idx
- topk_list = topk_idx
- expert_tokens = x[None, token_list].reshape(-1, hidden_size)
- expert_out = (
- self.mlp(expert_tokens, w1_chunked[expert_idx], v1_chunked[expert_idx], w2_chunked[expert_idx])
- * top_weights[token_list, topk_list, None]
- )
- out.index_add_(0, token_idx, expert_out)
- out = out.reshape(bsz, q_len, hidden_size)
- return out
- class DbrxFFN(nn.Module):
- def __init__(self, config: DbrxConfig):
- super().__init__()
- ffn_config = config.ffn_config
- self.router = DbrxRouter(
- hidden_size=config.d_model,
- moe_num_experts=ffn_config.moe_num_experts,
- moe_top_k=ffn_config.moe_top_k,
- moe_jitter_eps=ffn_config.moe_jitter_eps,
- moe_normalize_expert_weights=ffn_config.moe_normalize_expert_weights,
- )
- self.experts = DbrxExperts(
- hidden_size=config.d_model,
- ffn_hidden_size=ffn_config.ffn_hidden_size,
- moe_num_experts=ffn_config.moe_num_experts,
- ffn_act_fn=ffn_config.ffn_act_fn,
- )
- def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
- weights, top_weights, top_experts = self.router(x)
- out = self.experts(x, weights, top_weights, top_experts)
- return out, weights
- class DbrxBlock(nn.Module):
- def __init__(self, config: DbrxConfig, block_idx: int):
- super().__init__()
- self.hidden_size = config.d_model
- self.resid_pdrop = config.resid_pdrop
- self.block_idx = block_idx
- self.norm_attn_norm = DbrxNormAttentionNorm(
- config=config,
- block_idx=block_idx,
- )
- self.ffn = DbrxFFN(config=config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: torch.LongTensor = None,
- past_key_value: Optional[Cache] = None,
- output_attentions: Optional[bool] = False,
- output_router_logits: Optional[bool] = False,
- use_cache: Optional[bool] = False,
- cache_position: Optional[torch.LongTensor] = None,
- **kwargs: Any,
- ) -> Union[
- Tuple[torch.Tensor],
- Tuple[torch.Tensor, Optional[torch.Tensor]],
- Tuple[torch.Tensor, Optional[Cache]],
- Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
- Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]],
- Tuple[torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
- Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor]],
- ]:
- """Forward function for DbrxBlock.
- Args:
- hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
- attention_mask (`torch.Tensor`, *optional*): attention mask of size (batch_size, sequence_length)
- if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
- if default attention is used.
- past_key_value (`Tuple(torch.Tensor)`, *optional*): cached past key and value projection states
- output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all
- attention layers. See `attentions` under returned tensors for more detail.
- output_router_logits (`bool`, *optional*): Whether or not to return the router logits.
- use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are
- returned and can be used to speed up decoding (see `past_key_values`).
- cache_position (`torch.LongTensor`, *optional*): position ids of the cache
- """
- # Norm + Attention + Norm
- resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- cache_position=cache_position,
- **kwargs,
- )
- # Fully Connected
- hidden_states, router_logits = self.ffn(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
- hidden_states = resid_states + hidden_states
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights,)
- if use_cache:
- outputs += (present_key_value,)
- if output_router_logits:
- outputs += (router_logits,)
- return outputs
- DBRX_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`DbrxConfig`]):
- Model configuration class with all the parameters of the model. Initializing with a config file does not
- load the weights associated with the model, only the configuration. Check out the
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- @add_start_docstrings(
- "The bare DBRX Model outputting raw hidden-states without any specific head on top.",
- DBRX_START_DOCSTRING,
- )
- class DbrxPreTrainedModel(PreTrainedModel):
- config_class = DbrxConfig
- base_model_prefix = "transformer"
- supports_gradient_checkpointing = True
- _no_split_modules = ["DbrxBlock"]
- _skip_keys_device_placement = ["past_key_values"]
- _supports_flash_attn_2 = True
- _supports_sdpa = True
- _supports_cache_class = True
- _supports_quantized_cache = True
- _supports_static_cache = True
- def _init_weights(self, module: nn.Module):
- std = self.config.initializer_range
- if isinstance(module, nn.Linear):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, DbrxExpertGLU):
- module.w1.data.normal_(mean=0.0, std=std)
- module.v1.data.normal_(mean=0.0, std=std)
- module.w2.data.normal_(mean=0.0, std=std)
- DBRX_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
- `past_key_values`).
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
- information on the default strategy.
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.n_positions - 1]`.
- [What are position IDs?](../glossary#position-ids)
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
- Two formats are allowed:
- - a [`~cache_utils.Cache`] instance, see our
- [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
- cache format.
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
- legacy cache format will be returned.
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
- of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- output_router_logits (`bool`, *optional*):
- Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
- should not be returned during inference.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
- Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
- this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
- the complete sequence length.
- """
- @add_start_docstrings(
- "The bare DBRX Model outputting raw hidden-states without any specific head on top.",
- DBRX_START_DOCSTRING,
- )
- class DbrxModel(DbrxPreTrainedModel):
- """Transformer decoder consisting of *config.num_hidden_layers*. Each layer is a [`DbrxBlock`] layer.
- Args:
- config ([`DbrxConfig`]): Model configuration class with all parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- def __init__(self, config: DbrxConfig):
- super().__init__(config)
- self.padding_idx = config.pad_token_id
- self.vocab_size = config.vocab_size
- self.emb_pdrop = config.emb_pdrop
- self.wte = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
- self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)])
- self.norm_f = nn.LayerNorm(config.d_model, bias=False)
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Embedding:
- return self.wte
- def set_input_embeddings(self, value: nn.Embedding):
- self.wte = value
- @add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Cache] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- output_router_logits: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple, MoeModelOutputWithPast]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- output_router_logits = (
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if (input_ids is None) ^ (inputs_embeds is not None):
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
- if self.gradient_checkpointing and self.training and use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
- )
- use_cache = False
- if inputs_embeds is None:
- inputs_embeds = self.wte(input_ids)
- inputs_embeds = nn.functional.dropout(inputs_embeds, p=self.emb_pdrop, training=self.training)
- # kept for BC (non `Cache` `past_key_values` inputs)
- return_legacy_cache = False
- if use_cache and not isinstance(past_key_values, Cache):
- return_legacy_cache = True
- if past_key_values is None:
- past_key_values = DynamicCache()
- else:
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
- logger.warning_once(
- "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
- "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
- "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
- )
- if cache_position is None:
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
- cache_position = torch.arange(
- past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
- )
- if position_ids is None:
- position_ids = cache_position.unsqueeze(0)
- causal_mask = self._update_causal_mask(
- attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
- )
- # embed positions
- hidden_states = inputs_embeds
- # decoder layers
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- all_router_logits = () if output_router_logits else None
- next_decoder_cache = None
- for block in self.blocks:
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.gradient_checkpointing and self.training:
- block_outputs = self._gradient_checkpointing_func(
- block.__call__,
- hidden_states,
- causal_mask,
- position_ids,
- past_key_values,
- output_attentions,
- output_router_logits,
- use_cache,
- cache_position,
- )
- else:
- block_outputs = block(
- hidden_states,
- attention_mask=causal_mask,
- position_ids=position_ids,
- past_key_value=past_key_values,
- output_attentions=output_attentions,
- output_router_logits=output_router_logits,
- use_cache=use_cache,
- cache_position=cache_position,
- )
- hidden_states = block_outputs[0]
- if use_cache:
- next_decoder_cache = block_outputs[2 if output_attentions else 1]
- if output_attentions:
- all_self_attns += (block_outputs[1],)
- if output_router_logits:
- all_router_logits += (block_outputs[-1],)
- hidden_states = self.norm_f(hidden_states)
- # add hidden states from the last decoder layer
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- next_cache = next_decoder_cache if use_cache else None
- if return_legacy_cache:
- next_cache = next_cache.to_legacy_cache()
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
- if v is not None
- )
- return MoeModelOutputWithPast(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- router_logits=all_router_logits,
- )
- # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
- def _update_causal_mask(
- self,
- attention_mask: torch.Tensor,
- input_tensor: torch.Tensor,
- cache_position: torch.Tensor,
- past_key_values: Cache,
- output_attentions: bool,
- ):
- if self.config._attn_implementation == "flash_attention_2":
- if attention_mask is not None and 0.0 in attention_mask:
- return attention_mask
- return None
- # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
- # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
- # to infer the attention mask.
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
- using_static_cache = isinstance(past_key_values, StaticCache)
- # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
- if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
- if AttentionMaskConverter._ignore_causal_mask_sdpa(
- attention_mask,
- inputs_embeds=input_tensor,
- past_key_values_length=past_seen_tokens,
- is_training=self.training,
- ):
- return None
- dtype, device = input_tensor.dtype, input_tensor.device
- sequence_length = input_tensor.shape[1]
- if using_static_cache:
- target_length = past_key_values.get_max_cache_shape()
- else:
- target_length = (
- attention_mask.shape[-1]
- if isinstance(attention_mask, torch.Tensor)
- else past_seen_tokens + sequence_length + 1
- )
- # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
- causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
- attention_mask,
- sequence_length=sequence_length,
- target_length=target_length,
- dtype=dtype,
- device=device,
- cache_position=cache_position,
- batch_size=input_tensor.shape[0],
- )
- if (
- self.config._attn_implementation == "sdpa"
- and attention_mask is not None
- and attention_mask.device.type == "cuda"
- and not output_attentions
- ):
- # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
- # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
- # Details: https://github.com/pytorch/pytorch/issues/110213
- min_dtype = torch.finfo(dtype).min
- causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
- return causal_mask
- @staticmethod
- # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
- def _prepare_4d_causal_attention_mask_with_cache_position(
- attention_mask: torch.Tensor,
- sequence_length: int,
- target_length: int,
- dtype: torch.dtype,
- device: torch.device,
- cache_position: torch.Tensor,
- batch_size: int,
- **kwargs,
- ):
- """
- Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
- `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
- Args:
- attention_mask (`torch.Tensor`):
- A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
- `(batch_size, 1, query_length, key_value_length)`.
- sequence_length (`int`):
- The sequence length being processed.
- target_length (`int`):
- The target length: when generating with static cache, the mask should be as long as the static cache,
- to account for the 0 padding, the part of the cache that is not filled yet.
- dtype (`torch.dtype`):
- The dtype to use for the 4D attention mask.
- device (`torch.device`):
- The device to plcae the 4D attention mask on.
- cache_position (`torch.Tensor`):
- Indices depicting the position of the input sequence tokens in the sequence.
- batch_size (`torch.Tensor`):
- Batch size.
- """
- if attention_mask is not None and attention_mask.dim() == 4:
- # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
- causal_mask = attention_mask
- else:
- min_dtype = torch.finfo(dtype).min
- causal_mask = torch.full(
- (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
- )
- if sequence_length != 1:
- causal_mask = torch.triu(causal_mask, diagonal=1)
- causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
- causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
- if attention_mask is not None:
- causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
- mask_length = attention_mask.shape[-1]
- padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
- padding_mask = padding_mask == 0
- causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
- padding_mask, min_dtype
- )
- return causal_mask
- @add_start_docstrings("The DBRX Model transformer for causal language modeling.", DBRX_START_DOCSTRING)
- class DbrxForCausalLM(DbrxPreTrainedModel, GenerationMixin):
- def __init__(self, config: DbrxConfig):
- super().__init__(config)
- self.transformer = DbrxModel(config)
- self.vocab_size = config.vocab_size
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.moe_loss_weight = config.ffn_config.moe_loss_weight
- self.num_experts = config.ffn_config.moe_num_experts
- self.num_experts_per_tok = config.ffn_config.moe_top_k
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Embedding:
- return self.transformer.get_input_embeddings()
- def set_input_embeddings(self, value: nn.Embedding):
- self.transformer.set_input_embeddings(value)
- def get_output_embeddings(self) -> nn.Linear:
- return self.lm_head
- def set_output_embeddings(self, new_embeddings: nn.Linear):
- self.lm_head = new_embeddings
- def set_decoder(self, decoder: DbrxModel):
- self.transformer = decoder
- def get_decoder(self) -> DbrxModel:
- return self.transformer
- @add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Cache] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- output_router_logits: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- num_logits_to_keep: int = 0,
- ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
- r"""Forward function for causal language modeling.
- Args:
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
- num_logits_to_keep (`int`, *optional*):
- Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
- Returns:
- Example:
- ```python
- >> from transformers import AutoTokenizer, DbrxForCausalLM
- >> model = DbrxForCausalLM.from_pretrained("databricks/dbrx-instruct")
- >> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct")
- >> prompt = "Hey, are you conscious? Can you talk to me?"
- >> inputs = tokenizer(prompt, return_tensors="pt")
- >> # Generate
- >> generate_ids = model.generate(inputs.input_ids, max_length=30)
- >> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
- ```
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- output_router_logits = (
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
- outputs = self.transformer(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- output_router_logits=output_router_logits,
- return_dict=return_dict,
- cache_position=cache_position,
- )
- hidden_states = outputs[0]
- # No upscaling to float was ever done for Dbrx
- logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
- loss = None
- if labels is not None:
- # Shift so that tokens < n predict n
- shift_logits = logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = nn.CrossEntropyLoss()
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
- shift_labels = shift_labels.view(-1)
- # Enable model parallelism
- shift_labels = shift_labels.to(shift_logits.device)
- loss = loss_fct(shift_logits, shift_labels)
- aux_loss = None
- if output_router_logits:
- aux_loss = load_balancing_loss_func(
- outputs.router_logits if return_dict else outputs[-1],
- self.num_experts,
- self.num_experts_per_tok,
- attention_mask,
- )
- if labels is not None and loss is not None:
- loss += self.moe_loss_weight * aux_loss.to(loss.device) # make sure to reside in the same device
- if not return_dict:
- output = (logits,) + outputs[1:]
- if output_router_logits:
- output = (aux_loss,) + output
- return (loss,) + output if loss is not None else output
- return MoeCausalLMOutputWithPast(
- loss=loss,
- aux_loss=aux_loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- router_logits=outputs.router_logits,
- )
|