| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Copyright 2020 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import TYPE_CHECKING
- from ...utils import (
- OptionalDependencyNotAvailable,
- _LazyModule,
- is_tf_available,
- is_tokenizers_available,
- is_torch_available,
- )
- _import_structure = {
- "configuration_deberta": ["DebertaConfig", "DebertaOnnxConfig"],
- "tokenization_deberta": ["DebertaTokenizer"],
- }
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["tokenization_deberta_fast"] = ["DebertaTokenizerFast"]
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_deberta"] = [
- "DebertaForMaskedLM",
- "DebertaForQuestionAnswering",
- "DebertaForSequenceClassification",
- "DebertaForTokenClassification",
- "DebertaModel",
- "DebertaPreTrainedModel",
- ]
- try:
- if not is_tf_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_tf_deberta"] = [
- "TFDebertaForMaskedLM",
- "TFDebertaForQuestionAnswering",
- "TFDebertaForSequenceClassification",
- "TFDebertaForTokenClassification",
- "TFDebertaModel",
- "TFDebertaPreTrainedModel",
- ]
- if TYPE_CHECKING:
- from .configuration_deberta import DebertaConfig, DebertaOnnxConfig
- from .tokenization_deberta import DebertaTokenizer
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .tokenization_deberta_fast import DebertaTokenizerFast
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_deberta import (
- DebertaForMaskedLM,
- DebertaForQuestionAnswering,
- DebertaForSequenceClassification,
- DebertaForTokenClassification,
- DebertaModel,
- DebertaPreTrainedModel,
- )
- try:
- if not is_tf_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_tf_deberta import (
- TFDebertaForMaskedLM,
- TFDebertaForQuestionAnswering,
- TFDebertaForSequenceClassification,
- TFDebertaForTokenClassification,
- TFDebertaModel,
- TFDebertaPreTrainedModel,
- )
- else:
- import sys
- sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|