| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- # coding=utf-8
- # Copyright 2020, Microsoft and the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """DeBERTa model configuration"""
- from collections import OrderedDict
- from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
- from ...configuration_utils import PretrainedConfig
- from ...onnx import OnnxConfig
- from ...utils import logging
- if TYPE_CHECKING:
- from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
- logger = logging.get_logger(__name__)
- class DebertaConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is
- used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture.
- Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa
- [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Arguments:
- vocab_size (`int`, *optional*, defaults to 50265):
- Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
- hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
- are supported.
- hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- max_position_embeddings (`int`, *optional*, defaults to 512):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- type_vocab_size (`int`, *optional*, defaults to 0):
- The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- relative_attention (`bool`, *optional*, defaults to `False`):
- Whether use relative position encoding.
- max_relative_positions (`int`, *optional*, defaults to 1):
- The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
- as `max_position_embeddings`.
- pad_token_id (`int`, *optional*, defaults to 0):
- The value used to pad input_ids.
- position_biased_input (`bool`, *optional*, defaults to `True`):
- Whether add absolute position embedding to content embedding.
- pos_att_type (`List[str]`, *optional*):
- The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
- `["p2c", "c2p"]`.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- Example:
- ```python
- >>> from transformers import DebertaConfig, DebertaModel
- >>> # Initializing a DeBERTa microsoft/deberta-base style configuration
- >>> configuration = DebertaConfig()
- >>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
- >>> model = DebertaModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "deberta"
- def __init__(
- self,
- vocab_size=50265,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=0,
- initializer_range=0.02,
- layer_norm_eps=1e-7,
- relative_attention=False,
- max_relative_positions=-1,
- pad_token_id=0,
- position_biased_input=True,
- pos_att_type=None,
- pooler_dropout=0,
- pooler_hidden_act="gelu",
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.intermediate_size = intermediate_size
- self.hidden_act = hidden_act
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
- self.relative_attention = relative_attention
- self.max_relative_positions = max_relative_positions
- self.pad_token_id = pad_token_id
- self.position_biased_input = position_biased_input
- # Backwards compatibility
- if isinstance(pos_att_type, str):
- pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
- self.pos_att_type = pos_att_type
- self.vocab_size = vocab_size
- self.layer_norm_eps = layer_norm_eps
- self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
- self.pooler_dropout = pooler_dropout
- self.pooler_hidden_act = pooler_hidden_act
- # Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig
- class DebertaOnnxConfig(OnnxConfig):
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- if self.task == "multiple-choice":
- dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
- else:
- dynamic_axis = {0: "batch", 1: "sequence"}
- if self._config.type_vocab_size > 0:
- return OrderedDict(
- [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]
- )
- else:
- return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)])
- @property
- def default_onnx_opset(self) -> int:
- return 12
- def generate_dummy_inputs(
- self,
- preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
- batch_size: int = -1,
- seq_length: int = -1,
- num_choices: int = -1,
- is_pair: bool = False,
- framework: Optional["TensorType"] = None,
- num_channels: int = 3,
- image_width: int = 40,
- image_height: int = 40,
- tokenizer: "PreTrainedTokenizerBase" = None,
- ) -> Mapping[str, Any]:
- dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework)
- if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
- del dummy_inputs["token_type_ids"]
- return dummy_inputs
|