| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427 |
- # coding=utf-8
- # Copyright 2020 Microsoft and the Hugging Face Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch DeBERTa model."""
- from collections.abc import Sequence
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutput,
- MaskedLMOutput,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import softmax_backward_data
- from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
- from .configuration_deberta import DebertaConfig
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "DebertaConfig"
- _CHECKPOINT_FOR_DOC = "microsoft/deberta-base"
- # Masked LM docstring
- _CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback"
- _MASKED_LM_EXPECTED_OUTPUT = "' Paris'"
- _MASKED_LM_EXPECTED_LOSS = "0.54"
- # QuestionAnswering docstring
- _CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad"
- _QA_EXPECTED_OUTPUT = "' a nice puppet'"
- _QA_EXPECTED_LOSS = 0.14
- _QA_TARGET_START_INDEX = 12
- _QA_TARGET_END_INDEX = 14
- class ContextPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
- self.dropout = StableDropout(config.pooler_dropout)
- self.config = config
- def forward(self, hidden_states):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- context_token = hidden_states[:, 0]
- context_token = self.dropout(context_token)
- pooled_output = self.dense(context_token)
- pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
- return pooled_output
- @property
- def output_dim(self):
- return self.config.hidden_size
- class XSoftmax(torch.autograd.Function):
- """
- Masked Softmax which is optimized for saving memory
- Args:
- input (`torch.tensor`): The input tensor that will apply softmax.
- mask (`torch.IntTensor`):
- The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
- dim (int): The dimension that will apply softmax
- Example:
- ```python
- >>> import torch
- >>> from transformers.models.deberta.modeling_deberta import XSoftmax
- >>> # Make a tensor
- >>> x = torch.randn([4, 20, 100])
- >>> # Create a mask
- >>> mask = (x > 0).int()
- >>> # Specify the dimension to apply softmax
- >>> dim = -1
- >>> y = XSoftmax.apply(x, mask, dim)
- ```"""
- @staticmethod
- def forward(ctx, input, mask, dim):
- ctx.dim = dim
- rmask = ~(mask.to(torch.bool))
- output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
- output = torch.softmax(output, ctx.dim)
- output.masked_fill_(rmask, 0)
- ctx.save_for_backward(output)
- return output
- @staticmethod
- def backward(ctx, grad_output):
- (output,) = ctx.saved_tensors
- inputGrad = softmax_backward_data(ctx, grad_output, output, ctx.dim, output)
- return inputGrad, None, None
- @staticmethod
- def symbolic(g, self, mask, dim):
- import torch.onnx.symbolic_helper as sym_help
- from torch.onnx.symbolic_opset9 import masked_fill, softmax
- mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
- r_mask = g.op(
- "Cast",
- g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
- to_i=sym_help.cast_pytorch_to_onnx["Bool"],
- )
- output = masked_fill(
- g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
- )
- output = softmax(g, output, dim)
- return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
- class DropoutContext:
- def __init__(self):
- self.dropout = 0
- self.mask = None
- self.scale = 1
- self.reuse_mask = True
- def get_mask(input, local_context):
- if not isinstance(local_context, DropoutContext):
- dropout = local_context
- mask = None
- else:
- dropout = local_context.dropout
- dropout *= local_context.scale
- mask = local_context.mask if local_context.reuse_mask else None
- if dropout > 0 and mask is None:
- mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
- if isinstance(local_context, DropoutContext):
- if local_context.mask is None:
- local_context.mask = mask
- return mask, dropout
- class XDropout(torch.autograd.Function):
- """Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
- @staticmethod
- def forward(ctx, input, local_ctx):
- mask, dropout = get_mask(input, local_ctx)
- ctx.scale = 1.0 / (1 - dropout)
- if dropout > 0:
- ctx.save_for_backward(mask)
- return input.masked_fill(mask, 0) * ctx.scale
- else:
- return input
- @staticmethod
- def backward(ctx, grad_output):
- if ctx.scale > 1:
- (mask,) = ctx.saved_tensors
- return grad_output.masked_fill(mask, 0) * ctx.scale, None
- else:
- return grad_output, None
- @staticmethod
- def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
- from torch.onnx import symbolic_opset12
- dropout_p = local_ctx
- if isinstance(local_ctx, DropoutContext):
- dropout_p = local_ctx.dropout
- # StableDropout only calls this function when training.
- train = True
- # TODO: We should check if the opset_version being used to export
- # is > 12 here, but there's no good way to do that. As-is, if the
- # opset_version < 12, export will fail with a CheckerError.
- # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
- # if opset_version < 12:
- # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
- return symbolic_opset12.dropout(g, input, dropout_p, train)
- class StableDropout(nn.Module):
- """
- Optimized dropout module for stabilizing the training
- Args:
- drop_prob (float): the dropout probabilities
- """
- def __init__(self, drop_prob):
- super().__init__()
- self.drop_prob = drop_prob
- self.count = 0
- self.context_stack = None
- def forward(self, x):
- """
- Call the module
- Args:
- x (`torch.tensor`): The input tensor to apply dropout
- """
- if self.training and self.drop_prob > 0:
- return XDropout.apply(x, self.get_context())
- return x
- def clear_context(self):
- self.count = 0
- self.context_stack = None
- def init_context(self, reuse_mask=True, scale=1):
- if self.context_stack is None:
- self.context_stack = []
- self.count = 0
- for c in self.context_stack:
- c.reuse_mask = reuse_mask
- c.scale = scale
- def get_context(self):
- if self.context_stack is not None:
- if self.count >= len(self.context_stack):
- self.context_stack.append(DropoutContext())
- ctx = self.context_stack[self.count]
- ctx.dropout = self.drop_prob
- self.count += 1
- return ctx
- else:
- return self.drop_prob
- class DebertaLayerNorm(nn.Module):
- """LayerNorm module in the TF style (epsilon inside the square root)."""
- def __init__(self, size, eps=1e-12):
- super().__init__()
- self.weight = nn.Parameter(torch.ones(size))
- self.bias = nn.Parameter(torch.zeros(size))
- self.variance_epsilon = eps
- def forward(self, hidden_states):
- input_type = hidden_states.dtype
- hidden_states = hidden_states.float()
- mean = hidden_states.mean(-1, keepdim=True)
- variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
- hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
- hidden_states = hidden_states.to(input_type)
- y = self.weight * hidden_states + self.bias
- return y
- class DebertaSelfOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
- self.dropout = StableDropout(config.hidden_dropout_prob)
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- class DebertaAttention(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.self = DisentangledSelfAttention(config)
- self.output = DebertaSelfOutput(config)
- self.config = config
- def forward(
- self,
- hidden_states,
- attention_mask,
- output_attentions=False,
- query_states=None,
- relative_pos=None,
- rel_embeddings=None,
- ):
- self_output = self.self(
- hidden_states,
- attention_mask,
- output_attentions,
- query_states=query_states,
- relative_pos=relative_pos,
- rel_embeddings=rel_embeddings,
- )
- if output_attentions:
- self_output, att_matrix = self_output
- if query_states is None:
- query_states = hidden_states
- attention_output = self.output(self_output, query_states)
- if output_attentions:
- return (attention_output, att_matrix)
- else:
- return attention_output
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta
- class DebertaIntermediate(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- class DebertaOutput(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
- self.dropout = StableDropout(config.hidden_dropout_prob)
- self.config = config
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
- class DebertaLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.attention = DebertaAttention(config)
- self.intermediate = DebertaIntermediate(config)
- self.output = DebertaOutput(config)
- def forward(
- self,
- hidden_states,
- attention_mask,
- query_states=None,
- relative_pos=None,
- rel_embeddings=None,
- output_attentions=False,
- ):
- attention_output = self.attention(
- hidden_states,
- attention_mask,
- output_attentions=output_attentions,
- query_states=query_states,
- relative_pos=relative_pos,
- rel_embeddings=rel_embeddings,
- )
- if output_attentions:
- attention_output, att_matrix = attention_output
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- if output_attentions:
- return (layer_output, att_matrix)
- else:
- return layer_output
- class DebertaEncoder(nn.Module):
- """Modified BertEncoder with relative position bias support"""
- def __init__(self, config):
- super().__init__()
- self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
- self.relative_attention = getattr(config, "relative_attention", False)
- if self.relative_attention:
- self.max_relative_positions = getattr(config, "max_relative_positions", -1)
- if self.max_relative_positions < 1:
- self.max_relative_positions = config.max_position_embeddings
- self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
- self.gradient_checkpointing = False
- def get_rel_embedding(self):
- rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
- return rel_embeddings
- def get_attention_mask(self, attention_mask):
- if attention_mask.dim() <= 2:
- extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
- attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
- elif attention_mask.dim() == 3:
- attention_mask = attention_mask.unsqueeze(1)
- return attention_mask
- def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
- if self.relative_attention and relative_pos is None:
- q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
- relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device)
- return relative_pos
- def forward(
- self,
- hidden_states,
- attention_mask,
- output_hidden_states=True,
- output_attentions=False,
- query_states=None,
- relative_pos=None,
- return_dict=True,
- ):
- attention_mask = self.get_attention_mask(attention_mask)
- relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- if isinstance(hidden_states, Sequence):
- next_kv = hidden_states[0]
- else:
- next_kv = hidden_states
- rel_embeddings = self.get_rel_embedding()
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- hidden_states = self._gradient_checkpointing_func(
- layer_module.__call__,
- next_kv,
- attention_mask,
- query_states,
- relative_pos,
- rel_embeddings,
- output_attentions,
- )
- else:
- hidden_states = layer_module(
- next_kv,
- attention_mask,
- query_states=query_states,
- relative_pos=relative_pos,
- rel_embeddings=rel_embeddings,
- output_attentions=output_attentions,
- )
- if output_attentions:
- hidden_states, att_m = hidden_states
- if query_states is not None:
- query_states = hidden_states
- if isinstance(hidden_states, Sequence):
- next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
- else:
- next_kv = hidden_states
- if output_attentions:
- all_attentions = all_attentions + (att_m,)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
- )
- def build_relative_position(query_size, key_size, device):
- """
- Build relative position according to the query and key
- We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
- \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
- P_k\\)
- Args:
- query_size (int): the length of query
- key_size (int): the length of key
- Return:
- `torch.LongTensor`: A tensor with shape [1, query_size, key_size]
- """
- q_ids = torch.arange(query_size, dtype=torch.long, device=device)
- k_ids = torch.arange(key_size, dtype=torch.long, device=device)
- rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1)
- rel_pos_ids = rel_pos_ids[:query_size, :]
- rel_pos_ids = rel_pos_ids.unsqueeze(0)
- return rel_pos_ids
- @torch.jit.script
- def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
- return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
- @torch.jit.script
- def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
- return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
- @torch.jit.script
- def pos_dynamic_expand(pos_index, p2c_att, key_layer):
- return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
- class DisentangledSelfAttention(nn.Module):
- """
- Disentangled self-attention module
- Parameters:
- config (`str`):
- A model config class instance with the configuration to build a new model. The schema is similar to
- *BertConfig*, for more details, please refer [`DebertaConfig`]
- """
- def __init__(self, config):
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0:
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
- f"heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
- self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
- self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
- self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
- self.relative_attention = getattr(config, "relative_attention", False)
- self.talking_head = getattr(config, "talking_head", False)
- if self.talking_head:
- self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
- self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
- if self.relative_attention:
- self.max_relative_positions = getattr(config, "max_relative_positions", -1)
- if self.max_relative_positions < 1:
- self.max_relative_positions = config.max_position_embeddings
- self.pos_dropout = StableDropout(config.hidden_dropout_prob)
- if "c2p" in self.pos_att_type:
- self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
- if "p2c" in self.pos_att_type:
- self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)
- self.dropout = StableDropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self,
- hidden_states,
- attention_mask,
- output_attentions=False,
- query_states=None,
- relative_pos=None,
- rel_embeddings=None,
- ):
- """
- Call the module
- Args:
- hidden_states (`torch.FloatTensor`):
- Input states to the module usually the output from previous layer, it will be the Q,K and V in
- *Attention(Q,K,V)*
- attention_mask (`torch.BoolTensor`):
- An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
- sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
- th token.
- output_attentions (`bool`, *optional*):
- Whether return the attention matrix.
- query_states (`torch.FloatTensor`, *optional*):
- The *Q* state in *Attention(Q,K,V)*.
- relative_pos (`torch.LongTensor`):
- The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
- values ranging in [*-max_relative_positions*, *max_relative_positions*].
- rel_embeddings (`torch.FloatTensor`):
- The embedding of relative distances. It's a tensor of shape [\\(2 \\times
- \\text{max_relative_positions}\\), *hidden_size*].
- """
- if query_states is None:
- qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
- query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
- else:
- def linear(w, b, x):
- if b is not None:
- return torch.matmul(x, w.t()) + b.t()
- else:
- return torch.matmul(x, w.t()) # + b.t()
- ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
- qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
- qkvb = [None] * 3
- q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype))
- k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)]
- query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]
- query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
- value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
- rel_att = None
- # Take the dot product between "query" and "key" to get the raw attention scores.
- scale_factor = 1 + len(self.pos_att_type)
- scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
- query_layer = query_layer / scale.to(dtype=query_layer.dtype)
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- if self.relative_attention:
- rel_embeddings = self.pos_dropout(rel_embeddings)
- rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
- if rel_att is not None:
- attention_scores = attention_scores + rel_att
- # bxhxlxd
- if self.talking_head:
- attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
- attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
- attention_probs = self.dropout(attention_probs)
- if self.talking_head:
- attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (-1,)
- context_layer = context_layer.view(new_context_layer_shape)
- if output_attentions:
- return (context_layer, attention_probs)
- else:
- return context_layer
- def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
- if relative_pos is None:
- q = query_layer.size(-2)
- relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device)
- if relative_pos.dim() == 2:
- relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
- elif relative_pos.dim() == 3:
- relative_pos = relative_pos.unsqueeze(1)
- # bxhxqxk
- elif relative_pos.dim() != 4:
- raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
- att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions)
- relative_pos = relative_pos.long().to(query_layer.device)
- rel_embeddings = rel_embeddings[
- self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
- ].unsqueeze(0)
- score = 0
- # content->position
- if "c2p" in self.pos_att_type:
- pos_key_layer = self.pos_proj(rel_embeddings)
- pos_key_layer = self.transpose_for_scores(pos_key_layer)
- c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
- c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
- c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
- score += c2p_att
- # position->content
- if "p2c" in self.pos_att_type:
- pos_query_layer = self.pos_q_proj(rel_embeddings)
- pos_query_layer = self.transpose_for_scores(pos_query_layer)
- pos_query_layer /= torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
- if query_layer.size(-2) != key_layer.size(-2):
- r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device)
- else:
- r_pos = relative_pos
- p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
- p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype))
- p2c_att = torch.gather(
- p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
- ).transpose(-1, -2)
- if query_layer.size(-2) != key_layer.size(-2):
- pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
- p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
- score += p2c_att
- return score
- class DebertaEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super().__init__()
- pad_token_id = getattr(config, "pad_token_id", 0)
- self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
- self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
- self.position_biased_input = getattr(config, "position_biased_input", True)
- if not self.position_biased_input:
- self.position_embeddings = None
- else:
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
- if config.type_vocab_size > 0:
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
- if self.embedding_size != config.hidden_size:
- self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
- self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
- self.dropout = StableDropout(config.hidden_dropout_prob)
- self.config = config
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- if self.position_embeddings is not None:
- position_embeddings = self.position_embeddings(position_ids.long())
- else:
- position_embeddings = torch.zeros_like(inputs_embeds)
- embeddings = inputs_embeds
- if self.position_biased_input:
- embeddings += position_embeddings
- if self.config.type_vocab_size > 0:
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings += token_type_embeddings
- if self.embedding_size != self.config.hidden_size:
- embeddings = self.embed_proj(embeddings)
- embeddings = self.LayerNorm(embeddings)
- if mask is not None:
- if mask.dim() != embeddings.dim():
- if mask.dim() == 4:
- mask = mask.squeeze(1).squeeze(1)
- mask = mask.unsqueeze(2)
- mask = mask.to(embeddings.dtype)
- embeddings = embeddings * mask
- embeddings = self.dropout(embeddings)
- return embeddings
- class DebertaPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = DebertaConfig
- base_model_prefix = "deberta"
- _keys_to_ignore_on_load_unexpected = ["position_embeddings"]
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, nn.Linear):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- DEBERTA_START_DOCSTRING = r"""
- The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
- Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
- on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
- improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`DebertaConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- DEBERTA_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
- DEBERTA_START_DOCSTRING,
- )
- class DebertaModel(DebertaPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.embeddings = DebertaEmbeddings(config)
- self.encoder = DebertaEncoder(config)
- self.z_steps = 0
- self.config = config
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, new_embeddings):
- self.embeddings.word_embeddings = new_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
- @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutput]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- embedding_output = self.embeddings(
- input_ids=input_ids,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- mask=attention_mask,
- inputs_embeds=inputs_embeds,
- )
- encoder_outputs = self.encoder(
- embedding_output,
- attention_mask,
- output_hidden_states=True,
- output_attentions=output_attentions,
- return_dict=return_dict,
- )
- encoded_layers = encoder_outputs[1]
- if self.z_steps > 1:
- hidden_states = encoded_layers[-2]
- layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
- query_states = encoded_layers[-1]
- rel_embeddings = self.encoder.get_rel_embedding()
- attention_mask = self.encoder.get_attention_mask(attention_mask)
- rel_pos = self.encoder.get_rel_pos(embedding_output)
- for layer in layers[1:]:
- query_states = layer(
- hidden_states,
- attention_mask,
- output_attentions=False,
- query_states=query_states,
- relative_pos=rel_pos,
- rel_embeddings=rel_embeddings,
- )
- encoded_layers.append(query_states)
- sequence_output = encoded_layers[-1]
- if not return_dict:
- return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
- return BaseModelOutput(
- last_hidden_state=sequence_output,
- hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
- class DebertaForMaskedLM(DebertaPreTrainedModel):
- _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
- def __init__(self, config):
- super().__init__(config)
- self.deberta = DebertaModel(config)
- self.cls = DebertaOnlyMLMHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.cls.predictions.decoder
- def set_output_embeddings(self, new_embeddings):
- self.cls.predictions.decoder = new_embeddings
- self.cls.predictions.bias = new_embeddings.bias
- @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_MASKED_LM,
- output_type=MaskedLMOutput,
- config_class=_CONFIG_FOR_DOC,
- mask="[MASK]",
- expected_output=_MASKED_LM_EXPECTED_OUTPUT,
- expected_loss=_MASKED_LM_EXPECTED_LOSS,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, MaskedLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.deberta(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- prediction_scores = self.cls(sequence_output)
- masked_lm_loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss() # -100 index = padding token
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (prediction_scores,) + outputs[1:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return MaskedLMOutput(
- loss=masked_lm_loss,
- logits=prediction_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- class DebertaPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
- self.dense = nn.Linear(config.hidden_size, self.embedding_size)
- if isinstance(config.hidden_act, str):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- class DebertaLMPredictionHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.transform = DebertaPredictionHeadTransform(config)
- self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
- self.decoder.bias = self.bias
- def _tie_weights(self):
- self.decoder.bias = self.bias
- def forward(self, hidden_states):
- hidden_states = self.transform(hidden_states)
- hidden_states = self.decoder(hidden_states)
- return hidden_states
- # copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
- class DebertaOnlyMLMHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = DebertaLMPredictionHead(config)
- def forward(self, sequence_output):
- prediction_scores = self.predictions(sequence_output)
- return prediction_scores
- @add_start_docstrings(
- """
- DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
- pooled output) e.g. for GLUE tasks.
- """,
- DEBERTA_START_DOCSTRING,
- )
- class DebertaForSequenceClassification(DebertaPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- num_labels = getattr(config, "num_labels", 2)
- self.num_labels = num_labels
- self.deberta = DebertaModel(config)
- self.pooler = ContextPooler(config)
- output_dim = self.pooler.output_dim
- self.classifier = nn.Linear(output_dim, num_labels)
- drop_out = getattr(config, "cls_dropout", None)
- drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
- self.dropout = StableDropout(drop_out)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.deberta.get_input_embeddings()
- def set_input_embeddings(self, new_embeddings):
- self.deberta.set_input_embeddings(new_embeddings)
- @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=SequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.deberta(
- input_ids,
- token_type_ids=token_type_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- encoder_layer = outputs[0]
- pooled_output = self.pooler(encoder_layer)
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- # regression task
- loss_fn = nn.MSELoss()
- logits = logits.view(-1).to(labels.dtype)
- loss = loss_fn(logits, labels.view(-1))
- elif labels.dim() == 1 or labels.size(-1) == 1:
- label_index = (labels >= 0).nonzero()
- labels = labels.long()
- if label_index.size(0) > 0:
- labeled_logits = torch.gather(
- logits, 0, label_index.expand(label_index.size(0), logits.size(1))
- )
- labels = torch.gather(labels, 0, label_index.view(-1))
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
- else:
- loss = torch.tensor(0).to(logits)
- else:
- log_softmax = nn.LogSoftmax(-1)
- loss = -((log_softmax(logits) * labels).sum(-1)).mean()
- elif self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
- )
- @add_start_docstrings(
- """
- DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- DEBERTA_START_DOCSTRING,
- )
- class DebertaForTokenClassification(DebertaPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.deberta = DebertaModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.deberta(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
- )
- @add_start_docstrings(
- """
- DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
- layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- DEBERTA_START_DOCSTRING,
- )
- class DebertaForQuestionAnswering(DebertaPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.deberta = DebertaModel(config)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_QA,
- output_type=QuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_QA_EXPECTED_OUTPUT,
- expected_loss=_QA_EXPECTED_LOSS,
- qa_target_start_index=_QA_TARGET_START_INDEX,
- qa_target_end_index=_QA_TARGET_END_INDEX,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- start_positions: Optional[torch.Tensor] = None,
- end_positions: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.deberta(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[1:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|