| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- # coding=utf-8
- # Copyright 2020 Microsoft and the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Fast Tokenization class for model DeBERTa."""
- import json
- from typing import List, Optional, Tuple
- from tokenizers import pre_tokenizers
- from ...tokenization_utils_base import AddedToken, BatchEncoding
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import logging
- from .tokenization_deberta import DebertaTokenizer
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
- class DebertaTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "fast" DeBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
- Byte-Pair-Encoding.
- This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
- be encoded differently whether it is at the beginning of the sentence (without space) or not:
- ```python
- >>> from transformers import DebertaTokenizerFast
- >>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base")
- >>> tokenizer("Hello world")["input_ids"]
- [1, 31414, 232, 2]
- >>> tokenizer(" Hello world")["input_ids"]
- [1, 20920, 232, 2]
- ```
- You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
- the model was not pretrained this way, it might yield a decrease in performance.
- <Tip>
- When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
- </Tip>
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`, *optional*):
- Path to the vocabulary file.
- merges_file (`str`, *optional*):
- Path to the merges file.
- tokenizer_file (`str`, *optional*):
- The path to a tokenizer file to use instead of the vocab file.
- errors (`str`, *optional*, defaults to `"replace"`):
- Paradigm to follow when decoding bytes to UTF-8. See
- [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
- bos_token (`str`, *optional*, defaults to `"[CLS]"`):
- The beginning of sequence token.
- eos_token (`str`, *optional*, defaults to `"[SEP]"`):
- The end of sequence token.
- sep_token (`str`, *optional*, defaults to `"[SEP]"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- cls_token (`str`, *optional*, defaults to `"[CLS]"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- unk_token (`str`, *optional*, defaults to `"[UNK]"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- pad_token (`str`, *optional*, defaults to `"[PAD]"`):
- The token used for padding, for example when batching sequences of different lengths.
- mask_token (`str`, *optional*, defaults to `"[MASK]"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- add_prefix_space (`bool`, *optional*, defaults to `False`):
- Whether or not to add an initial space to the input. This allows to treat the leading word just as any
- other word. (Deberta tokenizer detect beginning of words by the preceding space).
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
- slow_tokenizer_class = DebertaTokenizer
- def __init__(
- self,
- vocab_file=None,
- merges_file=None,
- tokenizer_file=None,
- errors="replace",
- bos_token="[CLS]",
- eos_token="[SEP]",
- sep_token="[SEP]",
- cls_token="[CLS]",
- unk_token="[UNK]",
- pad_token="[PAD]",
- mask_token="[MASK]",
- add_prefix_space=False,
- **kwargs,
- ):
- super().__init__(
- vocab_file,
- merges_file,
- tokenizer_file=tokenizer_file,
- errors=errors,
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- sep_token=sep_token,
- cls_token=cls_token,
- pad_token=pad_token,
- mask_token=mask_token,
- add_prefix_space=add_prefix_space,
- **kwargs,
- )
- self.add_bos_token = kwargs.pop("add_bos_token", False)
- pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
- if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
- pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
- pre_tok_state["add_prefix_space"] = add_prefix_space
- self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
- self.add_prefix_space = add_prefix_space
- @property
- def mask_token(self) -> str:
- """
- `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
- having been set.
- Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily
- comprise the space before the *[MASK]*.
- """
- if self._mask_token is None:
- if self.verbose:
- logger.error("Using mask_token, but it is not set yet.")
- return None
- return str(self._mask_token)
- @mask_token.setter
- def mask_token(self, value):
- """
- Overriding the default behavior of the mask token to have it eat the space before it.
- """
- # Mask token behave like a normal word, i.e. include the space before it
- # So we set lstrip to True
- value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
- self._mask_token = value
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A DeBERTa sequence has the following format:
- - single sequence: [CLS] X [SEP]
- - pair of sequences: [CLS] A [SEP] B [SEP]
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- cls = [self.cls_token_id]
- sep = [self.sep_token_id]
- return cls + token_ids_0 + sep + token_ids_1 + sep
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
- sequence pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
- # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus
- def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- assert self.add_prefix_space or not is_split_into_words, (
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
- "to use it with pretokenized inputs."
- )
- return super()._batch_encode_plus(*args, **kwargs)
- # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus
- def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
- is_split_into_words = kwargs.get("is_split_into_words", False)
- assert self.add_prefix_space or not is_split_into_words, (
- f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
- "to use it with pretokenized inputs."
- )
- return super()._encode_plus(*args, **kwargs)
- # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(save_directory, name=filename_prefix)
- return tuple(files)
|