| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # coding=utf-8
- # Copyright 2021 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """DeiT model configuration"""
- from collections import OrderedDict
- from typing import Mapping
- from packaging import version
- from ...configuration_utils import PretrainedConfig
- from ...onnx import OnnxConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class DeiTConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`DeiTModel`]. It is used to instantiate an DeiT
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the DeiT
- [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224)
- architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` are supported.
- hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- patch_size (`int`, *optional*, defaults to 16):
- The size (resolution) of each patch.
- num_channels (`int`, *optional*, defaults to 3):
- The number of input channels.
- qkv_bias (`bool`, *optional*, defaults to `True`):
- Whether to add a bias to the queries, keys and values.
- encoder_stride (`int`, *optional*, defaults to 16):
- Factor to increase the spatial resolution by in the decoder head for masked image modeling.
- Example:
- ```python
- >>> from transformers import DeiTConfig, DeiTModel
- >>> # Initializing a DeiT deit-base-distilled-patch16-224 style configuration
- >>> configuration = DeiTConfig()
- >>> # Initializing a model (with random weights) from the deit-base-distilled-patch16-224 style configuration
- >>> model = DeiTModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "deit"
- def __init__(
- self,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.0,
- attention_probs_dropout_prob=0.0,
- initializer_range=0.02,
- layer_norm_eps=1e-12,
- image_size=224,
- patch_size=16,
- num_channels=3,
- qkv_bias=True,
- encoder_stride=16,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.intermediate_size = intermediate_size
- self.hidden_act = hidden_act
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.image_size = image_size
- self.patch_size = patch_size
- self.num_channels = num_channels
- self.qkv_bias = qkv_bias
- self.encoder_stride = encoder_stride
- class DeiTOnnxConfig(OnnxConfig):
- torch_onnx_minimum_version = version.parse("1.11")
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- return OrderedDict(
- [
- ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
- ]
- )
- @property
- def atol_for_validation(self) -> float:
- return 1e-4
|