convert_jukebox.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. # coding=utf-8
  2. # Copyright 2022 The HuggingFace Inc. team.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. """Convert Jukebox checkpoints"""
  16. import argparse
  17. import json
  18. import os
  19. from pathlib import Path
  20. import requests
  21. import torch
  22. from transformers import JukeboxConfig, JukeboxModel
  23. from transformers.utils import logging
  24. logging.set_verbosity_info()
  25. logger = logging.get_logger(__name__)
  26. PREFIX = "https://openaipublic.azureedge.net/jukebox/models/"
  27. MODEL_MAPPING = {
  28. "jukebox-1b-lyrics": [
  29. "5b/vqvae.pth.tar",
  30. "5b/prior_level_0.pth.tar",
  31. "5b/prior_level_1.pth.tar",
  32. "1b_lyrics/prior_level_2.pth.tar",
  33. ],
  34. "jukebox-5b-lyrics": [
  35. "5b/vqvae.pth.tar",
  36. "5b/prior_level_0.pth.tar",
  37. "5b/prior_level_1.pth.tar",
  38. "5b_lyrics/prior_level_2.pth.tar",
  39. ],
  40. }
  41. def replace_key(key):
  42. if key.endswith(".model.1.bias") and len(key.split(".")) > 10:
  43. key = key.replace(".model.1.bias", ".conv1d_1.bias")
  44. elif key.endswith(".model.1.weight") and len(key.split(".")) > 10:
  45. key = key.replace(".model.1.weight", ".conv1d_1.weight")
  46. elif key.endswith(".model.3.bias") and len(key.split(".")) > 10:
  47. key = key.replace(".model.3.bias", ".conv1d_2.bias")
  48. elif key.endswith(".model.3.weight") and len(key.split(".")) > 10:
  49. key = key.replace(".model.3.weight", ".conv1d_2.weight")
  50. if "conditioner_blocks.0." in key:
  51. key = key.replace("conditioner_blocks.0", "conditioner_blocks")
  52. if "prime_prior" in key:
  53. key = key.replace("prime_prior", "encoder")
  54. if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
  55. key = key.replace(".emb.", ".")
  56. if key.endswith("k"): # replace vqvae.X.k with vqvae.X.codebook
  57. return key.replace(".k", ".codebook")
  58. if "y_emb." in key:
  59. return key.replace("y_emb.", "metadata_embedding.")
  60. if "x_emb.emb." in key:
  61. key = key.replace("0.x_emb.emb", "embed_tokens")
  62. if "prime_state_ln" in key:
  63. return key.replace("prime_state_ln", "encoder.final_layer_norm")
  64. if ".ln" in key:
  65. return key.replace(".ln", ".layer_norm")
  66. if "_ln" in key:
  67. return key.replace("_ln", "_layer_norm")
  68. if "prime_state_proj" in key:
  69. return key.replace("prime_state_proj", "encoder.proj_in")
  70. if "prime_x_out" in key:
  71. return key.replace("prime_x_out", "encoder.lm_head")
  72. if "prior.x_out" in key:
  73. return key.replace("x_out", "fc_proj_out")
  74. if "x_emb" in key:
  75. return key.replace("x_emb", "embed_tokens")
  76. return key
  77. def fix_jukebox_keys(state_dict, model_state_dict, key_prefix, mapping):
  78. new_dict = {}
  79. import re
  80. re_encoder_block_conv_in = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)")
  81. re_encoder_block_resnet = re.compile(
  82. r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
  83. )
  84. re_encoder_block_proj_out = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)")
  85. re_decoder_block_conv_out = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)")
  86. re_decoder_block_resnet = re.compile(
  87. r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
  88. )
  89. re_decoder_block_proj_in = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)")
  90. re_prior_cond_conv_out = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)")
  91. re_prior_cond_resnet = re.compile(
  92. r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
  93. )
  94. re_prior_cond_proj_in = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)")
  95. for original_key, value in state_dict.items():
  96. # rename vqvae.encoder keys
  97. if re_encoder_block_conv_in.fullmatch(original_key):
  98. regex_match = re_encoder_block_conv_in.match(original_key)
  99. groups = regex_match.groups()
  100. block_index = int(groups[2]) * 2 + int(groups[3])
  101. re_new_key = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"
  102. key = re_encoder_block_conv_in.sub(re_new_key, original_key)
  103. elif re_encoder_block_resnet.fullmatch(original_key):
  104. regex_match = re_encoder_block_resnet.match(original_key)
  105. groups = regex_match.groups()
  106. block_index = int(groups[2]) * 2 + int(groups[3])
  107. conv_index = {"1": 1, "3": 2}[groups[-2]]
  108. prefix = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."
  109. resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
  110. re_new_key = prefix + resnet_block
  111. key = re_encoder_block_resnet.sub(re_new_key, original_key)
  112. elif re_encoder_block_proj_out.fullmatch(original_key):
  113. regex_match = re_encoder_block_proj_out.match(original_key)
  114. groups = regex_match.groups()
  115. re_new_key = f"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"
  116. key = re_encoder_block_proj_out.sub(re_new_key, original_key)
  117. # rename vqvae.decoder keys
  118. elif re_decoder_block_conv_out.fullmatch(original_key):
  119. regex_match = re_decoder_block_conv_out.match(original_key)
  120. groups = regex_match.groups()
  121. block_index = int(groups[2]) * 2 + int(groups[3]) - 2
  122. re_new_key = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"
  123. key = re_decoder_block_conv_out.sub(re_new_key, original_key)
  124. elif re_decoder_block_resnet.fullmatch(original_key):
  125. regex_match = re_decoder_block_resnet.match(original_key)
  126. groups = regex_match.groups()
  127. block_index = int(groups[2]) * 2 + int(groups[3]) - 2
  128. conv_index = {"1": 1, "3": 2}[groups[-2]]
  129. prefix = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."
  130. resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
  131. re_new_key = prefix + resnet_block
  132. key = re_decoder_block_resnet.sub(re_new_key, original_key)
  133. elif re_decoder_block_proj_in.fullmatch(original_key):
  134. regex_match = re_decoder_block_proj_in.match(original_key)
  135. groups = regex_match.groups()
  136. re_new_key = f"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"
  137. key = re_decoder_block_proj_in.sub(re_new_key, original_key)
  138. # rename prior cond.model to upsampler.upsample_block and resnet
  139. elif re_prior_cond_conv_out.fullmatch(original_key):
  140. regex_match = re_prior_cond_conv_out.match(original_key)
  141. groups = regex_match.groups()
  142. block_index = int(groups[1]) * 2 + int(groups[2]) - 2
  143. re_new_key = f"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"
  144. key = re_prior_cond_conv_out.sub(re_new_key, original_key)
  145. elif re_prior_cond_resnet.fullmatch(original_key):
  146. regex_match = re_prior_cond_resnet.match(original_key)
  147. groups = regex_match.groups()
  148. block_index = int(groups[1]) * 2 + int(groups[2]) - 2
  149. conv_index = {"1": 1, "3": 2}[groups[-2]]
  150. prefix = f"conditioner_blocks.upsampler.upsample_block.{block_index}."
  151. resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
  152. re_new_key = prefix + resnet_block
  153. key = re_prior_cond_resnet.sub(re_new_key, original_key)
  154. elif re_prior_cond_proj_in.fullmatch(original_key):
  155. regex_match = re_prior_cond_proj_in.match(original_key)
  156. groups = regex_match.groups()
  157. re_new_key = f"conditioner_blocks.upsampler.proj_in.{groups[-1]}"
  158. key = re_prior_cond_proj_in.sub(re_new_key, original_key)
  159. # keep original key
  160. else:
  161. key = original_key
  162. key = replace_key(key)
  163. if f"{key_prefix}.{key}" not in model_state_dict or key is None:
  164. print(f"failed converting {original_key} to {key}, does not match")
  165. # handle missmatched shape
  166. elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape:
  167. val = model_state_dict[f"{key_prefix}.{key}"]
  168. print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match")
  169. key = original_key
  170. mapping[key] = original_key
  171. new_dict[key] = value
  172. return new_dict
  173. @torch.no_grad()
  174. def convert_openai_checkpoint(model_name=None, pytorch_dump_folder_path=None):
  175. """
  176. Copy/paste/tweak model's weights to our Jukebox structure.
  177. """
  178. for file in MODEL_MAPPING[model_name]:
  179. if not os.path.isfile(f"{pytorch_dump_folder_path}/{file.split('/')[-1]}"):
  180. r = requests.get(f"{PREFIX}{file}", allow_redirects=True)
  181. os.makedirs(f"{pytorch_dump_folder_path}/", exist_ok=True)
  182. open(f"{pytorch_dump_folder_path}/{file.split('/')[-1]}", "wb").write(r.content)
  183. model_to_convert = MODEL_MAPPING[model_name.split("/")[-1]]
  184. config = JukeboxConfig.from_pretrained(model_name)
  185. model = JukeboxModel(config)
  186. weight_dict = []
  187. mapping = {}
  188. for i, dict_name in enumerate(model_to_convert):
  189. old_dic = torch.load(f"{pytorch_dump_folder_path}/{dict_name.split('/')[-1]}")["model"]
  190. new_dic = {}
  191. for k in old_dic.keys():
  192. if k.endswith(".b"):
  193. new_dic[k.replace("b", "bias")] = old_dic[k]
  194. elif k.endswith(".w"):
  195. new_dic[k.replace("w", "weight")] = old_dic[k]
  196. elif "level_2" not in dict_name and "cond.model." in k:
  197. new_dic[k.replace(".blocks.", ".model.")] = old_dic[k]
  198. else:
  199. new_dic[k] = old_dic[k]
  200. key_prefix = "vqvae" if i == 0 else f"priors.{3 - i}"
  201. new_dic = fix_jukebox_keys(new_dic, model.state_dict(), key_prefix, mapping)
  202. weight_dict.append(new_dic)
  203. vqvae_state_dict = weight_dict.pop(0)
  204. model.vqvae.load_state_dict(vqvae_state_dict)
  205. for i in range(len(weight_dict)):
  206. model.priors[i].load_state_dict(weight_dict[2 - i])
  207. Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
  208. with open(f"{pytorch_dump_folder_path}/mapping.json", "w") as txtfile:
  209. json.dump(mapping, txtfile)
  210. print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
  211. model.save_pretrained(pytorch_dump_folder_path)
  212. return weight_dict
  213. if __name__ == "__main__":
  214. parser = argparse.ArgumentParser()
  215. # Required parameters
  216. parser.add_argument(
  217. "--model_name",
  218. default="jukebox-5b-lyrics",
  219. type=str,
  220. help="Name of the model you'd like to convert.",
  221. )
  222. parser.add_argument(
  223. "--pytorch_dump_folder_path",
  224. default="jukebox-5b-lyrics-converted",
  225. type=str,
  226. help="Path to the output PyTorch model directory.",
  227. )
  228. args = parser.parse_args()
  229. convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)