| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- # coding=utf-8
- # Copyright 2023 The Mega Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """MEGA configuration"""
- from collections import OrderedDict
- from typing import Mapping
- from ....configuration_utils import PretrainedConfig
- from ....onnx import OnnxConfig
- from ....utils import logging
- logger = logging.get_logger(__name__)
- class MegaConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`MegaModel`]. It is used to instantiate a Mega
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the Mega
- [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 30522):
- Vocabulary size of the Mega model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`MegaModel`].
- hidden_size (`int`, *optional*, defaults to 128):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (`int`, *optional*, defaults to 4):
- Number of hidden layers in the Mega encoder.
- intermediate_size (`int`, *optional*, defaults to 256):
- Dimensionality of the hidden size (self-attention value projection) within the Mega encoder
- ema_projection_size (`int`, *optional*, defaults to 16):
- Dimensionality of the MegaMultiDimensionDampedEma
- bidirectional (`bool`, *optional*, defaults to `True`):
- Whether the MegaMultiDimensionDampedEma used in Mega's self-attention should work bidirectionally (`True`)
- or unidirectionally (`False`). Bidirectional EMA is incompatible with causal decoding, so this should be
- False if you intend to use the model as a decoder.
- shared_representation_size (`int`, *optional*, defaults to 64):
- Dimensionality of the linear projection for shared representation of self-attention queries and keys
- use_chunking (`bool`, *optional*, defaults to `False`):
- Whether to chunk inputs for linear self-attention complexity (described as Mega-chunk in the paper)
- chunk_size (`int`, *optional*, defaults to -1):
- If `use_chunking` is set to `True`, determines the size of the chunks to apply to the input sequence. If
- chunking is used, input sequences must be padded to a multiple of `chunk_size`
- truncation (`int`, *optional*):
- If specified, the sequence length for which to truncate MegaMultiDimensionDampedEma
- normalize_before_mega (`bool`, *optional*, defaults to `True`):
- Whether to normalize before (`True`) or after (`False`) passing through Mega encoder blocks
- normalization_type (`str`, *optional*, defaults to `"scalenorm"`):
- Type of normalization to use in Mega encoder blocks. Choose one of `"scalenorm"`, `"layernorm"`,
- `"rmsnorm"`, `"batchnorm"`, or `"syncbatchnorm"` (GPU required for syncbatchnorm)
- norm_affine (`bool`, *optional*, defaults to `True`):
- If `True`, applies a parameterized affine transformation to inputs during normalization
- activation (`str`, *optional*, defaults to `"silu"`):
- Activation function to apply within Mega encoder blocks. Choose one of `"silu"`, `"relu"`, `"linear"`,
- `"gelu"`, or `"gelu_accurate"`
- attention_activation (`str`, *optional*, defaults to `"softmax"`):
- Activation function to apply for single-headed self-attention (a la Transformer). Choose one of
- `"softmax"`, `"laplace"`, or `"relu2"`
- dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout probability for EMA self-attention
- hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- use_feature_dropout (`bool`, *optional*, defaults to `False`):
- Whether to use feature-based (`True`) or standard dropout (`False`)
- use_normalized_ffn (`bool`, *optional*, defaults to `True`):
- Whether to use the normalized feed-forward sub-layer in Mega blocks (`True`) or pass Mega encoder output
- as-is (`False`)
- nffn_hidden_size (`int`, *optional*, defaults to 256):
- If using the normalized feed-forward network (NFFN) layer within Mega (`use_normalized_ffn = True`), this
- is the hidden size of the NFFN
- normalize_before_ffn (`bool`, *optional*, defaults to `True`):
- Whether to normalize before (`True`) or after (`False`) the feed-forward portion of NFFN
- nffn_activation_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the NFFN component.
- max_positions (`int`, *optional*, defaults to 2048):
- The maximum sequence length to use for positional representations. For `"simple"` relative positional bias,
- this is a hard limit on input length; `"rotary"` relative positional bias will extrapolate to longer
- sequences
- add_token_type_embeddings (`bool`, *optional*, defaults to `True`):
- Whether to account for token types in embeddings. Left as optional to maintain compatibility with original
- implementation while adding support for token types.
- type_vocab_size (`int`, *optional*, defaults to 2):
- The vocabulary size of the `token_type_ids` passed when calling [`MegaModel`]. Only used if
- `add_token_type_embeddings = True`
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- ema_delta_alpha_range (`float`, *optional*, defaults to 0.2):
- The standard deviation for initializing the delta (damping factor) and alpha (decay factor) parameters in
- MegaMultiDimensionDampedEma.
- ema_beta_range (`float`, *optional*, defaults to 0.02):
- The standard deviation for initializing the beta parameter (expansion matrix) in
- MegaMultiDimensionDampedEma.
- ema_gamma_omega_range (`float`, *optional*, defaults to 1.0):
- The standard deviation for initializing the gamma (projection matrix) and omega (residual weight)
- parameters in MultiDimensionEMA.
- relative_positional_bias (`str`, *optional*, defaults to `"rotary"`):
- Type of relative positional encoding. Choose one of `"rotary"` or `"simple"`. If `"simple"` is selected,
- `max_positions` is used as a limit on input size, while `"rotary"` extrapolates beyond `max_positions`.
- is_decoder (`bool`, *optional*, defaults to `False`):
- Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`.
- classifier_dropout (`float`, *optional*):
- The dropout ratio for the classification head.
- add_lm_hidden_dense_layer (`bool`, *optional*, defaults to `True`):
- Whether to include a hidden layer for projection between encoder outputs and LM heads (`True`) or pass
- hidden states directly to LM head (`False`). Remains optional for compatibility with original
- implementation
- Examples:
- ```python
- >>> from transformers import MegaConfig, MegaModel
- >>> # Initializing a Mega configuration
- >>> configuration = MegaConfig()
- >>> # Initializing a model (with random weights) from the configuration
- >>> model = MegaModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "mega"
- def __init__(
- self,
- vocab_size=30522,
- hidden_size=128,
- num_hidden_layers=4,
- intermediate_size=256,
- ema_projection_size=16,
- bidirectional=True,
- shared_representation_size=64,
- use_chunking=False,
- chunk_size=-1,
- truncation=None,
- normalize_before_mega=True,
- normalization_type="scalenorm",
- norm_affine=True,
- activation="silu",
- attention_activation="softmax",
- dropout_prob=0.1,
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- use_feature_dropout=False,
- use_normalized_ffn=True,
- nffn_hidden_size=256,
- normalize_before_ffn=True,
- nffn_activation_dropout_prob=0.1,
- max_positions=2048,
- add_token_type_embeddings=False,
- type_vocab_size=2,
- initializer_range=0.02,
- ema_delta_alpha_range=0.2,
- ema_beta_range=0.02,
- ema_gamma_omega_range=1.0,
- pad_token_id=1,
- bos_token_id=0,
- eos_token_id=2,
- relative_positional_bias="rotary",
- classifier_dropout=None,
- use_cache=True,
- add_lm_hidden_dense_layer=True,
- **kwargs,
- ):
- super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.activation = activation
- self.attention_activation = attention_activation
- self.intermediate_size = intermediate_size
- self.ema_projection_size = ema_projection_size
- self.bidirectional = bidirectional
- self.shared_representation_size = shared_representation_size
- self.use_chunking = use_chunking
- self.chunk_size = chunk_size
- self.truncation = truncation
- self.normalize_before_mega = normalize_before_mega
- self.normalization_type = normalization_type
- self.norm_affine = norm_affine
- self.dropout_prob = dropout_prob
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.use_feature_dropout = use_feature_dropout
- self.use_normalized_ffn = use_normalized_ffn
- self.nffn_hidden_size = nffn_hidden_size
- self.normalize_before_ffn = normalize_before_ffn
- self.nffn_activation_dropout_prob = nffn_activation_dropout_prob
- self.max_positions = max_positions
- self.add_token_type_embeddings = add_token_type_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
- self.ema_delta_alpha_range = ema_delta_alpha_range
- self.ema_beta_range = ema_beta_range
- self.ema_gamma_omega_range = ema_gamma_omega_range
- self.relative_positional_bias = relative_positional_bias
- self.use_cache = use_cache
- self.classifier_dropout = classifier_dropout
- self.add_lm_hidden_dense_layer = add_lm_hidden_dense_layer
- self.num_attention_heads = 1 # not used but required by Hugging Face
- class MegaOnnxConfig(OnnxConfig):
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- if self.task == "multiple-choice":
- dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
- else:
- dynamic_axis = {0: "batch", 1: "sequence"}
- return OrderedDict(
- [
- ("input_ids", dynamic_axis),
- ("attention_mask", dynamic_axis),
- ]
- )
|