| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """VAN model configuration"""
- from ....configuration_utils import PretrainedConfig
- from ....utils import logging
- logger = logging.get_logger(__name__)
- class VanConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model
- according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the VAN
- [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- num_channels (`int`, *optional*, defaults to 3):
- The number of input channels.
- patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
- Patch size to use in each stage's embedding layer.
- strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
- Stride size to use in each stage's embedding layer to downsample the input.
- hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`):
- Dimensionality (hidden size) at each stage.
- depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`):
- Depth (number of layers) for each stage.
- mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
- The expansion ratio for mlp layer at each stage.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`,
- `"selu"` and `"gelu_new"` are supported.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the layer normalization layers.
- layer_scale_init_value (`float`, *optional*, defaults to 0.01):
- The initial value for layer scaling.
- drop_path_rate (`float`, *optional*, defaults to 0.0):
- The dropout probability for stochastic depth.
- dropout_rate (`float`, *optional*, defaults to 0.0):
- The dropout probability for dropout.
- Example:
- ```python
- >>> from transformers import VanModel, VanConfig
- >>> # Initializing a VAN van-base style configuration
- >>> configuration = VanConfig()
- >>> # Initializing a model from the van-base style configuration
- >>> model = VanModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "van"
- def __init__(
- self,
- image_size=224,
- num_channels=3,
- patch_sizes=[7, 3, 3, 3],
- strides=[4, 2, 2, 2],
- hidden_sizes=[64, 128, 320, 512],
- depths=[3, 3, 12, 3],
- mlp_ratios=[8, 8, 4, 4],
- hidden_act="gelu",
- initializer_range=0.02,
- layer_norm_eps=1e-6,
- layer_scale_init_value=1e-2,
- drop_path_rate=0.0,
- dropout_rate=0.0,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.image_size = image_size
- self.num_channels = num_channels
- self.patch_sizes = patch_sizes
- self.strides = strides
- self.hidden_sizes = hidden_sizes
- self.depths = depths
- self.mlp_ratios = mlp_ratios
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.layer_scale_init_value = layer_scale_init_value
- self.drop_path_rate = drop_path_rate
- self.dropout_rate = dropout_rate
|