| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for Donut."""
- from typing import Dict, List, Optional, Union
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import (
- get_resize_output_image_size,
- pad,
- resize,
- to_channel_dimension_format,
- )
- from ...image_utils import (
- IMAGENET_STANDARD_MEAN,
- IMAGENET_STANDARD_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- get_image_size,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import TensorType, filter_out_non_signature_kwargs, logging
- from ...utils.import_utils import is_vision_available
- logger = logging.get_logger(__name__)
- if is_vision_available():
- import PIL
- class DonutImageProcessor(BaseImageProcessor):
- r"""
- Constructs a Donut image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
- `do_resize` in the `preprocess` method.
- size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
- Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
- the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
- method.
- resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
- Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
- do_thumbnail (`bool`, *optional*, defaults to `True`):
- Whether to resize the image using thumbnail method.
- do_align_long_axis (`bool`, *optional*, defaults to `False`):
- Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
- do_pad (`bool`, *optional*, defaults to `True`):
- Whether to pad the image. If `random_padding` is set to `True` in `preprocess`, each image is padded with a
- random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
- padded to the largest image size in the batch.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
- the `preprocess` method.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
- method.
- do_normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
- image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
- Image standard deviation.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BILINEAR,
- do_thumbnail: bool = True,
- do_align_long_axis: bool = False,
- do_pad: bool = True,
- do_rescale: bool = True,
- rescale_factor: Union[int, float] = 1 / 255,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"height": 2560, "width": 1920}
- if isinstance(size, (tuple, list)):
- # The previous feature extractor size parameter was in (width, height) format
- size = size[::-1]
- size = get_size_dict(size)
- self.do_resize = do_resize
- self.size = size
- self.resample = resample
- self.do_thumbnail = do_thumbnail
- self.do_align_long_axis = do_align_long_axis
- self.do_pad = do_pad
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
- self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
- def align_long_axis(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Align the long axis of the image to the longest axis of the specified size.
- Args:
- image (`np.ndarray`):
- The image to be aligned.
- size (`Dict[str, int]`):
- The size `{"height": h, "width": w}` to align the long axis to.
- data_format (`str` or `ChannelDimension`, *optional*):
- The data format of the output image. If unset, the same format as the input image is used.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- Returns:
- `np.ndarray`: The aligned image.
- """
- input_height, input_width = get_image_size(image, channel_dim=input_data_format)
- output_height, output_width = size["height"], size["width"]
- if (output_width < output_height and input_width > input_height) or (
- output_width > output_height and input_width < input_height
- ):
- image = np.rot90(image, 3)
- if data_format is not None:
- image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
- return image
- def pad_image(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- random_padding: bool = False,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Pad the image to the specified size.
- Args:
- image (`np.ndarray`):
- The image to be padded.
- size (`Dict[str, int]`):
- The size `{"height": h, "width": w}` to pad the image to.
- random_padding (`bool`, *optional*, defaults to `False`):
- Whether to use random padding or not.
- data_format (`str` or `ChannelDimension`, *optional*):
- The data format of the output image. If unset, the same format as the input image is used.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- output_height, output_width = size["height"], size["width"]
- input_height, input_width = get_image_size(image, channel_dim=input_data_format)
- delta_width = output_width - input_width
- delta_height = output_height - input_height
- if random_padding:
- pad_top = np.random.randint(low=0, high=delta_height + 1)
- pad_left = np.random.randint(low=0, high=delta_width + 1)
- else:
- pad_top = delta_height // 2
- pad_left = delta_width // 2
- pad_bottom = delta_height - pad_top
- pad_right = delta_width - pad_left
- padding = ((pad_top, pad_bottom), (pad_left, pad_right))
- return pad(image, padding, data_format=data_format, input_data_format=input_data_format)
- def pad(self, *args, **kwargs):
- logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.")
- return self.pad_image(*args, **kwargs)
- def thumbnail(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
- corresponding dimension of the specified size.
- Args:
- image (`np.ndarray`):
- The image to be resized.
- size (`Dict[str, int]`):
- The size `{"height": h, "width": w}` to resize the image to.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- The resampling filter to use.
- data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
- The data format of the output image. If unset, the same format as the input image is used.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- input_height, input_width = get_image_size(image, channel_dim=input_data_format)
- output_height, output_width = size["height"], size["width"]
- # We always resize to the smallest of either the input or output size.
- height = min(input_height, output_height)
- width = min(input_width, output_width)
- if height == input_height and width == input_width:
- return image
- if input_height > input_width:
- width = int(input_width * height / input_height)
- elif input_width > input_height:
- height = int(input_height * width / input_width)
- return resize(
- image,
- size=(height, width),
- resample=resample,
- reducing_gap=2.0,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resizes `image` to `(height, width)` specified by `size` using the PIL library.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Size of the output image.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Resampling filter to use when resiizing the image.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- size = get_size_dict(size)
- shortest_edge = min(size["height"], size["width"])
- output_size = get_resize_output_image_size(
- image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
- )
- resized_image = resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- return resized_image
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- resample: PILImageResampling = None,
- do_thumbnail: bool = None,
- do_align_long_axis: bool = None,
- do_pad: bool = None,
- random_padding: bool = False,
- do_rescale: bool = None,
- rescale_factor: float = None,
- do_normalize: bool = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image after resizing. Shortest edge of the image is resized to min(size["height"],
- size["width"]) with the longest edge resized to keep the input aspect ratio.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
- has an effect if `do_resize` is set to `True`.
- do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
- Whether to resize the image using thumbnail method.
- do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
- Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
- do_pad (`bool`, *optional*, defaults to `self.do_pad`):
- Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
- amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
- padded to the largest image size in the batch.
- random_padding (`bool`, *optional*, defaults to `self.random_padding`):
- Whether to use random padding when padding the image. If `True`, each image in the batch with be padded
- with a random amount of padding on each side up to the size of the largest image in the batch.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image pixel values.
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean to use for normalization.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation to use for normalization.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - Unset: defaults to the channel dimension format of the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- if isinstance(size, (tuple, list)):
- # Previous feature extractor had size in (width, height) format
- size = size[::-1]
- size = get_size_dict(size)
- resample = resample if resample is not None else self.resample
- do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail
- do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis
- do_pad = do_pad if do_pad is not None else self.do_pad
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_pad=do_pad,
- size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg.
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if is_scaled_image(images[0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- if do_align_long_axis:
- images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images]
- if do_resize:
- images = [
- self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
- for image in images
- ]
- if do_thumbnail:
- images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images]
- if do_pad:
- images = [
- self.pad_image(
- image=image, size=size, random_padding=random_padding, input_data_format=input_data_format
- )
- for image in images
- ]
- if do_rescale:
- images = [
- self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- for image in images
- ]
- if do_normalize:
- images = [
- self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
- for image in images
- ]
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
- ]
- data = {"pixel_values": images}
- return BatchFeature(data=data, tensor_type=return_tensors)
|