| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for DPT."""
- import math
- from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union
- if TYPE_CHECKING:
- from ...modeling_outputs import DepthEstimatorOutput
- import numpy as np
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import pad, resize, to_channel_dimension_format
- from ...image_utils import (
- IMAGENET_STANDARD_MEAN,
- IMAGENET_STANDARD_STD,
- ChannelDimension,
- ImageInput,
- PILImageResampling,
- get_image_size,
- infer_channel_dimension_format,
- is_scaled_image,
- is_torch_available,
- is_torch_tensor,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- validate_preprocess_arguments,
- )
- from ...utils import (
- TensorType,
- filter_out_non_signature_kwargs,
- is_vision_available,
- logging,
- requires_backends,
- )
- if is_torch_available():
- import torch
- if is_vision_available():
- import PIL
- logger = logging.get_logger(__name__)
- def get_resize_output_image_size(
- input_image: np.ndarray,
- output_size: Union[int, Iterable[int]],
- keep_aspect_ratio: bool,
- multiple: int,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> Tuple[int, int]:
- def constrain_to_multiple_of(val, multiple, min_val=0, max_val=None):
- x = round(val / multiple) * multiple
- if max_val is not None and x > max_val:
- x = math.floor(val / multiple) * multiple
- if x < min_val:
- x = math.ceil(val / multiple) * multiple
- return x
- output_size = (output_size, output_size) if isinstance(output_size, int) else output_size
- input_height, input_width = get_image_size(input_image, input_data_format)
- output_height, output_width = output_size
- # determine new height and width
- scale_height = output_height / input_height
- scale_width = output_width / input_width
- if keep_aspect_ratio:
- # scale as little as possible
- if abs(1 - scale_width) < abs(1 - scale_height):
- # fit width
- scale_height = scale_width
- else:
- # fit height
- scale_width = scale_height
- new_height = constrain_to_multiple_of(scale_height * input_height, multiple=multiple)
- new_width = constrain_to_multiple_of(scale_width * input_width, multiple=multiple)
- return (new_height, new_width)
- class DPTImageProcessor(BaseImageProcessor):
- r"""
- Constructs a DPT image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Whether to resize the image's (height, width) dimensions. Can be overidden by `do_resize` in `preprocess`.
- size (`Dict[str, int]` *optional*, defaults to `{"height": 384, "width": 384}`):
- Size of the image after resizing. Can be overidden by `size` in `preprocess`.
- resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
- Defines the resampling filter to use if resizing the image. Can be overidden by `resample` in `preprocess`.
- keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
- If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. Can
- be overidden by `keep_aspect_ratio` in `preprocess`.
- ensure_multiple_of (`int`, *optional*, defaults to 1):
- If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Can be overidden
- by `ensure_multiple_of` in `preprocess`.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overidden by `do_rescale` in
- `preprocess`.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Scale factor to use if rescaling the image. Can be overidden by `rescale_factor` in `preprocess`.
- do_normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
- method.
- image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
- image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
- Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
- number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
- do_pad (`bool`, *optional*, defaults to `False`):
- Whether to apply center padding. This was introduced in the DINOv2 paper, which uses the model in
- combination with DPT.
- size_divisor (`int`, *optional*):
- If `do_pad` is `True`, pads the image dimensions to be divisible by this value. This was introduced in the
- DINOv2 paper, which uses the model in combination with DPT.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- keep_aspect_ratio: bool = False,
- ensure_multiple_of: int = 1,
- do_rescale: bool = True,
- rescale_factor: Union[int, float] = 1 / 255,
- do_normalize: bool = True,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_pad: bool = False,
- size_divisor: int = None,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"height": 384, "width": 384}
- size = get_size_dict(size)
- self.do_resize = do_resize
- self.size = size
- self.keep_aspect_ratio = keep_aspect_ratio
- self.ensure_multiple_of = ensure_multiple_of
- self.resample = resample
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- self.do_normalize = do_normalize
- self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
- self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
- self.do_pad = do_pad
- self.size_divisor = size_divisor
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- keep_aspect_ratio: bool = False,
- ensure_multiple_of: int = 1,
- resample: PILImageResampling = PILImageResampling.BICUBIC,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> np.ndarray:
- """
- Resize an image to target size `(size["height"], size["width"])`. If `keep_aspect_ratio` is `True`, the image
- is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is
- set, the image is resized to a size that is a multiple of this value.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Target size of the output image.
- keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
- If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved.
- ensure_multiple_of (`int`, *optional*, defaults to 1):
- The image is resized to a size that is a multiple of this value.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Defines the resampling filter to use if resizing the image. Otherwise, the image is resized to size
- specified in `size`.
- resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
- Resampling filter to use when resiizing the image.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- input_data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred.
- """
- size = get_size_dict(size)
- if "height" not in size or "width" not in size:
- raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}")
- output_size = get_resize_output_image_size(
- image,
- output_size=(size["height"], size["width"]),
- keep_aspect_ratio=keep_aspect_ratio,
- multiple=ensure_multiple_of,
- input_data_format=input_data_format,
- )
- return resize(
- image,
- size=output_size,
- resample=resample,
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- def pad_image(
- self,
- image: np.array,
- size_divisor: int,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ):
- """
- Center pad an image to be a multiple of `multiple`.
- Args:
- image (`np.ndarray`):
- Image to pad.
- size_divisor (`int`):
- The width and height of the image will be padded to a multiple of this number.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - Unset: Use the channel dimension format of the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- def _get_pad(size, size_divisor):
- new_size = math.ceil(size / size_divisor) * size_divisor
- pad_size = new_size - size
- pad_size_left = pad_size // 2
- pad_size_right = pad_size - pad_size_left
- return pad_size_left, pad_size_right
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(image)
- height, width = get_image_size(image, input_data_format)
- pad_size_left, pad_size_right = _get_pad(height, size_divisor)
- pad_size_top, pad_size_bottom = _get_pad(width, size_divisor)
- return pad(image, ((pad_size_left, pad_size_right), (pad_size_top, pad_size_bottom)), data_format=data_format)
- @filter_out_non_signature_kwargs()
- def preprocess(
- self,
- images: ImageInput,
- do_resize: bool = None,
- size: int = None,
- keep_aspect_ratio: bool = None,
- ensure_multiple_of: int = None,
- resample: PILImageResampling = None,
- do_rescale: bool = None,
- rescale_factor: float = None,
- do_normalize: bool = None,
- image_mean: Optional[Union[float, List[float]]] = None,
- image_std: Optional[Union[float, List[float]]] = None,
- do_pad: bool = None,
- size_divisor: int = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> PIL.Image.Image:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the image after reszing. If `keep_aspect_ratio` is `True`, the image is resized to the largest
- possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is
- resized to a size that is a multiple of this value.
- keep_aspect_ratio (`bool`, *optional*, defaults to `self.keep_aspect_ratio`):
- Whether to keep the aspect ratio of the image. If False, the image will be resized to (size, size). If
- True, the image will be resized to keep the aspect ratio and the size will be the maximum possible.
- ensure_multiple_of (`int`, *optional*, defaults to `self.ensure_multiple_of`):
- Ensure that the image size is a multiple of this value.
- resample (`int`, *optional*, defaults to `self.resample`):
- Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
- has an effect if `do_resize` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image values between [0 - 1].
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
- Whether to normalize the image.
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
- Image mean.
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
- Image standard deviation.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- size = size if size is not None else self.size
- size = get_size_dict(size)
- keep_aspect_ratio = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
- ensure_multiple_of = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
- resample = resample if resample is not None else self.resample
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- do_normalize = do_normalize if do_normalize is not None else self.do_normalize
- image_mean = image_mean if image_mean is not None else self.image_mean
- image_std = image_std if image_std is not None else self.image_std
- do_pad = do_pad if do_pad is not None else self.do_pad
- size_divisor = size_divisor if size_divisor is not None else self.size_divisor
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- validate_preprocess_arguments(
- do_rescale=do_rescale,
- rescale_factor=rescale_factor,
- do_normalize=do_normalize,
- image_mean=image_mean,
- image_std=image_std,
- do_pad=do_pad,
- size_divisibility=size_divisor,
- do_resize=do_resize,
- size=size,
- resample=resample,
- )
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if is_scaled_image(images[0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- if do_resize:
- images = [
- self.resize(
- image=image,
- size=size,
- resample=resample,
- keep_aspect_ratio=keep_aspect_ratio,
- ensure_multiple_of=ensure_multiple_of,
- input_data_format=input_data_format,
- )
- for image in images
- ]
- if do_rescale:
- images = [
- self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- for image in images
- ]
- if do_normalize:
- images = [
- self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
- for image in images
- ]
- if do_pad:
- images = [
- self.pad_image(image=image, size_divisor=size_divisor, input_data_format=input_data_format)
- for image in images
- ]
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
- ]
- data = {"pixel_values": images}
- return BatchFeature(data=data, tensor_type=return_tensors)
- # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->DPT
- def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
- """
- Converts the output of [`DPTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
- Args:
- outputs ([`DPTForSemanticSegmentation`]):
- Raw outputs of the model.
- target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
- List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
- predictions will not be resized.
- Returns:
- semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
- segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
- specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
- """
- # TODO: add support for other frameworks
- logits = outputs.logits
- # Resize logits and compute semantic segmentation maps
- if target_sizes is not None:
- if len(logits) != len(target_sizes):
- raise ValueError(
- "Make sure that you pass in as many target sizes as the batch dimension of the logits"
- )
- if is_torch_tensor(target_sizes):
- target_sizes = target_sizes.numpy()
- semantic_segmentation = []
- for idx in range(len(logits)):
- resized_logits = torch.nn.functional.interpolate(
- logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
- )
- semantic_map = resized_logits[0].argmax(dim=0)
- semantic_segmentation.append(semantic_map)
- else:
- semantic_segmentation = logits.argmax(dim=1)
- semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
- return semantic_segmentation
- def post_process_depth_estimation(
- self,
- outputs: "DepthEstimatorOutput",
- target_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None,
- ) -> List[Dict[str, TensorType]]:
- """
- Converts the raw output of [`DepthEstimatorOutput`] into final depth predictions and depth PIL images.
- Only supports PyTorch.
- Args:
- outputs ([`DepthEstimatorOutput`]):
- Raw outputs of the model.
- target_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*):
- Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
- (height, width) of each image in the batch. If left to None, predictions will not be resized.
- Returns:
- `List[Dict[str, TensorType]]`: A list of dictionaries of tensors representing the processed depth
- predictions.
- """
- requires_backends(self, "torch")
- predicted_depth = outputs.predicted_depth
- if (target_sizes is not None) and (len(predicted_depth) != len(target_sizes)):
- raise ValueError(
- "Make sure that you pass in as many target sizes as the batch dimension of the predicted depth"
- )
- results = []
- target_sizes = [None] * len(predicted_depth) if target_sizes is None else target_sizes
- for depth, target_size in zip(predicted_depth, target_sizes):
- if target_size is not None:
- depth = torch.nn.functional.interpolate(
- depth.unsqueeze(0).unsqueeze(1), size=target_size, mode="bicubic", align_corners=False
- ).squeeze()
- results.append({"predicted_depth": depth})
- return results
|