| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- # coding=utf-8
- # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """EfficientNet model configuration"""
- from collections import OrderedDict
- from typing import List, Mapping
- from packaging import version
- from ...configuration_utils import PretrainedConfig
- from ...onnx import OnnxConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class EfficientNetConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an
- EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the EfficientNet
- [google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- num_channels (`int`, *optional*, defaults to 3):
- The number of input channels.
- image_size (`int`, *optional*, defaults to 600):
- The input image size.
- width_coefficient (`float`, *optional*, defaults to 2.0):
- Scaling coefficient for network width at each stage.
- depth_coefficient (`float`, *optional*, defaults to 3.1):
- Scaling coefficient for network depth at each stage.
- depth_divisor `int`, *optional*, defaults to 8):
- A unit of network width.
- kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
- List of kernel sizes to be used in each block.
- in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
- List of input channel sizes to be used in each block for convolutional layers.
- out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
- List of output channel sizes to be used in each block for convolutional layers.
- depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
- List of block indices with square padding.
- strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
- List of stride sizes to be used in each block for convolutional layers.
- num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
- List of the number of times each block is to repeated.
- expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
- List of scaling coefficient of each block.
- squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
- Squeeze expansion ratio.
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
- `"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
- hiddem_dim (`int`, *optional*, defaults to 1280):
- The hidden dimension of the layer before the classification head.
- pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
- Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
- `"max"`]
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- batch_norm_eps (`float`, *optional*, defaults to 1e-3):
- The epsilon used by the batch normalization layers.
- batch_norm_momentum (`float`, *optional*, defaults to 0.99):
- The momentum used by the batch normalization layers.
- dropout_rate (`float`, *optional*, defaults to 0.5):
- The dropout rate to be applied before final classifier layer.
- drop_connect_rate (`float`, *optional*, defaults to 0.2):
- The drop rate for skip connections.
- Example:
- ```python
- >>> from transformers import EfficientNetConfig, EfficientNetModel
- >>> # Initializing a EfficientNet efficientnet-b7 style configuration
- >>> configuration = EfficientNetConfig()
- >>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration
- >>> model = EfficientNetModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "efficientnet"
- def __init__(
- self,
- num_channels: int = 3,
- image_size: int = 600,
- width_coefficient: float = 2.0,
- depth_coefficient: float = 3.1,
- depth_divisor: int = 8,
- kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
- in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
- out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
- depthwise_padding: List[int] = [],
- strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
- num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
- expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
- squeeze_expansion_ratio: float = 0.25,
- hidden_act: str = "swish",
- hidden_dim: int = 2560,
- pooling_type: str = "mean",
- initializer_range: float = 0.02,
- batch_norm_eps: float = 0.001,
- batch_norm_momentum: float = 0.99,
- dropout_rate: float = 0.5,
- drop_connect_rate: float = 0.2,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.num_channels = num_channels
- self.image_size = image_size
- self.width_coefficient = width_coefficient
- self.depth_coefficient = depth_coefficient
- self.depth_divisor = depth_divisor
- self.kernel_sizes = kernel_sizes
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.depthwise_padding = depthwise_padding
- self.strides = strides
- self.num_block_repeats = num_block_repeats
- self.expand_ratios = expand_ratios
- self.squeeze_expansion_ratio = squeeze_expansion_ratio
- self.hidden_act = hidden_act
- self.hidden_dim = hidden_dim
- self.pooling_type = pooling_type
- self.initializer_range = initializer_range
- self.batch_norm_eps = batch_norm_eps
- self.batch_norm_momentum = batch_norm_momentum
- self.dropout_rate = dropout_rate
- self.drop_connect_rate = drop_connect_rate
- self.num_hidden_layers = sum(num_block_repeats) * 4
- class EfficientNetOnnxConfig(OnnxConfig):
- torch_onnx_minimum_version = version.parse("1.11")
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- return OrderedDict(
- [
- ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
- ]
- )
- @property
- def atol_for_validation(self) -> float:
- return 1e-5
|